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Zusammenfassung

In vielen wissenschaftlichen Bereichen fallen heutzutage riesige Datenmen-
gen an, wodurch es mitunter aufwéindig und zeitintensiv ist die wirklich
wichtigen Bereiche zu detektieren. Insbesondere gilt dies fiir riesige seismis-
che Volumendatensitze, die fiir die Erkundung von Ol- und Gasvorkommen
benétigt werden. Da die Daten sehr umfangreich sind und die manuelle
Analyse sehr viel Zeit in Anspruch nimmt, kann ein semi-automatischer
Ansatz zum einen die dafiir benétigte Zeit reduzieren, zum anderen aber
mehr Flexibilitat als ein vollstdndig automatischer Ansatz bieten.

In dieser Masterarbeit wird ein Algorithmus entwickelt, der interessante Re-
gionen in seismischen Volumendaten iiber Anomalien in lokalen Histogram-
men automatisch detektiert. Des Weiteren werden die Ergebnisse visualisiert
und verschiedene Hilfsmittel fiir die Interpretation der Daten entwickelt. Der
Ansatz wird durch Experimente mit synthetischen Daten und Expertenin-
terviews auf der Basis von realen Daten evaluiert. Abschlieffend werden
verschiedene Verbesserungen aufgefiihrt, die dabei helfen kénnen den Algo-
rithmus in den Interpretationsablauf der Seismologen zu integrieren.

Abstract

In scientific data visualization huge amounts of data are generated, which
implies the task of analyzing these in an efficient way. This includes the
reliable detection of important parts and a low expenditure of time and ef-
fort. This is especially important for the big-sized seismic volume datasets,
that are required for the exploration of oil and gas deposits. Since the
generated data is complex and a manual analysis is very time-intensive, a
semi-automatic approach could on one hand reduce the time required for the
analysis and on the other hand offer more flexibility, than a fully automatic
approach.

This master’s thesis introduces an algorithm, which is capable of locating
regions of interest in seismic volume data automatically by detecting anoma-
lies in local histograms. Furthermore the results are visualized and a variety
of tools for the exploration and interpretation of the detected regions are
developed. The approach is evaluated by experiments with synthetic data
and in interviews with domain experts on the basis of real-world data. Con-
clusively further improvements to integrate the algorithm into the seismic
interpretation workflow are suggested.
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1 Introduction

The exploration and analysis of volume data are difficult and time-intensive
tasks. This is due to the fact that modern methods of acquiring huge
datasets have surpassed our ability of automatically analyzing these and
extracting relevant information. Especially this is true for applications in
the field of searching for oil and gas, where huge areas are scanned and pro-
cessed to a dataset with multiple terabytes of data. This data has to be
analyzed by a seismic interpreter, which is also called expert in the context
of this thesis. The aim of the interpretation is to identify important regions
with accumulations of oil and gas. Often no prior knowledge of the struc-
tures below the surface is available. Thus domain experts have to orient in
an unknown, large-scale dataset and gather supportive background informa-
tion, before the actual interpretation of the dataset can be performed.

While the traditional workflow was to print the dataset slice by slice on
sheets of paper, modern technology has revolutionized the procedure. So-
phisticated software suites such as OpendTect [16] or Petrel [41] use profi-
cient techniques to display the dataset in a three-dimensional way. Different
tools like complex transfer function editors with multiple dimensions allow
to isolate certain structures and assign optical properties to them. This
improves the capabilities of data exploration even further. Yet the identi-
fication of important regions and the extensive analysis of these are very
time-consuming, since aforementioned methods require a lot of manual in-
teraction in multiple domains. For instance, the generation of an applicable
transfer function includes a lot of parameter tweaking with continuous ex-
amining of the changes in the rendering view. This is especially a challenge,
since the location of interesting features is typically not known and a user
invests a lot of time exploring currently irrelevant regions.

Through the given challenges of a manual approach, the automation of the
analysis stands to reason. One possibility is to rely on fully automatic ap-
proaches. The aim of these is to detect relevant features automatically and
present them to a user. However these approaches have multiple challenges.
At first, they usually require an elaborate and time-intensive training step,
that adapts the algorithm to the specialties of the targeted features. There-
for ground-truth data with millions of interpreted samples has to be avail-
able. This is a challenging task in the domain of seismic volume data, which
is usually not published by the owning companies. And even if enough data
could be gathered, domain knowledge and expertise are required to interpret
it for the usage as qualified training data. This process takes time and is
expensive [5]. Finally, for every desired feature, the training has to be re-
peated, always requiring new interpreted data containing the target feature.

(]



Chapter 1 | Introduction

While the fully manual approach grants a certain flexibility with the inter-
pretation under the constraint of a bigger time exposure, the fully automatic
approach is feature-dependent and thus not generic enough to be used solely.
A combination of these two could on one hand lead to results faster, com-
pared to a manual interpretation, and on the other hand remain generic, so
that relevant regions can be detected independently from the features con-
tained. Such a semi-automatic approach would detect interesting regions,
which could then be interpreted manually. This way the time of screening
the dataset and searching for interesting regions could be saved and multiple
starting points for the interpretation could be offered directly to an expert.

On a global scale the seismic datasets mostly consist of Gaussian distributed
amplitude values. But the data distribution may vary locally in certain parts
of the dataset. These areas are of primary interest for an interpreter, as they
can indicate the presence of valuable hydrocarbons. A local variation of this
type is known as a geophysical anomaly [26]. The principle of the analysis
is to identify these as a contrast to the general background data, taken from
a given region. Thus the geophysicist is looking for an anomaly in relation
to the surroundings [50]. These are usually only present in small regions of
the dataset and might not be visible in the global histogram, as the varia-
tion of the data distribution is too subtle in a global sense. However they
have a better chance of appearing in the value distribution of the respective
region’s local histogram. Hence these anomalies could be detectable, when
comparing the local histogram of that region to the local histograms of the
neighborhood, in which the anomaly is not present. The detection of these
anomalies is important, since the interpretation of them could be a direct
solution to finding hydrocarbons and to defining the lithology [48]. Thus,
the detection of the anomalous regions might be a suitable approach for a
semi-automatic algorithm.

The aim of this master’s thesis is to develop an algorithm, which determines
interesting regions automatically by using information of local histograms.
Additionally a visualization of the detected regions and multiple tools to
support the exploration and interpretation are proposed.

The outline of this thesis is as follows. In chapter 2 the required geolog-
ical background is introduced. Chapter 3 provides information on the field
of volume data in computer science. Related work on the topic of feature
detection is discussed in chapter 4. The conception and procedure of the
algorithm are documented in chapter 5. Chapter 6 presents the visualiza-
tion of detected regions and the developed tools for the interaction and
interpretation. The algorithm and visualization are evaluated in chapter 7.
Finally the conclusion of the approach is given in chapter 8, together with
an outlook and suggestions for future work.




2 | Geological Background

The algorithm developed in this thesis is designed to support the interpreta-
tion of seismic data, which is performed by the oil and gas industry. Hence
this chapter introduces the geological background required in order to follow
along. The geological process of deposition in the subsurface and important
features within are explained, and the journey of seismic data from the
recording to the computer screen of a seismic interpreter is described.

2.1 Formation of Petroleum Deposits

Petroleum, which has already been used by humans for thousands of years,
even prior to metals and coal, is still one of the most important commodi-
ties in modern industry. Thus the optimization of the search for it is of
major importance. One vital step therefor, is to understand the geological
processes, which lead to the accumulation in the subsurface. Most of the oil
and gas fields were found in sedimentary basins. These develop over tens of
millions of years and contain fragmented material, which hardens into layers
of rock. This process starts with the subsidence of the land, allowing the
sea to extend. This phase is the so-called transgression.

Figure 2.1: Illustration of a porous rock (top) and a permeable rock (bottom) [50]

The surrounding mountains are slowly eroded by wind, rain and ice. Parts of
the rock are streaming down rivers and are finally deposited. The amount of
sediment, which is washed down the rivers, increases over time and begins to
overtake the sea. Further arriving material is then stacked around the edges
to form beaches and deltas at the river mouths. As the shoreline grows, the
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sea is pushed back again in the phase of regression [50]. One period of trans-
gression and regression is called a sedimentary cycle. Many of these cycles
have to be performed in order to form a sedimentary basin. The lower layers
are compressed by those above with increasing weight. The material varies
from sand grains and plants, over corals and shells up to ashes from volcanic
eruption, which all are transformed in diverse types of rock. These different
types vary in their porosity and permeability, which are key factors in the
deposition of petroleum. As it can be seen in figure 2.1 a rock is porous,
if it has voids and small cavities between individual grains. If these voids
are connected, the rock is permeable and fluid is able to pass through it [50].

Oil and gas originate from organic matter, such as the remains of plants
and animals. Therefor these have to be accumulated in fine-grained sedi-
ments, as for example shale or limestone. They have to be located between
two permeable layers, one of the transgressive phase on top and one of the
regression below. These circumstances in combination with a deficit of oxy-
gen and a depth with high enough temperatures (110° — 130°C) can lead to
the transformation of the organic matter inside the layer to oil and gas. Mi-
nor fluctuations in transgression and regression are very important for this
step, as they bring together potential source rocks and so-called reservoir
rocks, which have sufficient porosity to contain a significant volume of hydro-
carbons. The required permeability occurs either naturally, as for example
in sand and limestones, or it can be the effect of later earth movements like
faulting and folding. The oil and gas then moves from the source rock to
the reservoir rock in a process referred to as migration, which is displayed
in figure 2.2 [50].

RESERVOIR ROCK

Figure 2.2: Process of oil migration [50]
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A vast majority of pores below the water table are filled with water. Thus
the migration of oil and gas is related to hydrology. While the water move-
ment is very slow with just a couple of centimeters per year, the path of the
migration can easily cover hundreds kilometers. Thus, the whole process can
last a very long period of time. Finally, when the oil reaches the reservoir
rock, it is stored there. Due to its lower density compared to the water con-
tained in the rock, it moves to the top. This upward movement continues,
until a fine-grained impermeable layer is reached. The hydrocarbons are
now trapped and cannot move any further. These so-called petroleum traps
vary in their structure and multiple groups can be distinguished [50].

The first group are the structural traps. One representative of these is the
anticlinal trap which occurs, when rock layers fold into a dome shape. An
illustration of this trap can be seen in Figure 2.3. The hydrocarbons can
migrate into the dome from all sides and accumulate in the top, where the
cap rock stops the migration [50].
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Figure 2.3: Hydrocarbons in an anticlinal trap [50]

Another structural trap is the so-called fault trap, which is formed by a fault
plane, interrupting the direction of migration. A fault plane is a displace-
ment of the earth layers. In addition to the process of migration, an example
for this kind of trap can also be found in figure 2.2. The oil cannot proceed
its way, as it is stopped by the fine-grained material in the fault or by an
impermeable layer on the other side of it. It is mandatory, that the faulting
occurs prior to the migration and that it completely seals the reservoir [50].

6
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The so-called salt dome is a further popular example for a structural trap. It
appears when salt rises vertically, while being less dense than the overlying
structures and then makes its way through the sedimentary column. The
salt dome, together with the faults and anticlines at the head of it, provides
a number of trapping mechanisms [50]. An illustration of these can be seen
in figure 2.4.
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Figure 2.4: Salt dome structure [50]

Besides the structural traps, there are stratigraphic traps and hybrids, which
combine both groups. As these are not of major importance for this thesis,
they are not described here. However a detailed description of them can be
found in [50].

2.2 Acquisition of Seismic Data

Oil and gas are the result of a combination of less common events, includ-
ing existence and burial of the source rock, a reservoir in range and a trap
in which the hydrocarbons can accumulate. The prediction of where these
events have occurred is not easy [50]. Randomly drilling a hole for this pur-
pose is not an option, as it can easily cost between 10 and 50 million dollars
and does only provide information at discrete locations [14,26]. Instead the
industry has invented multiple techniques to minimize the drilling require-
ment in order to make the search for oil and gas more efficient. These are
reviewed in this chapter.

~
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One of the main goals of geophysical exploration is to understand and predict
the types of rock below the surface. While this was traditionally achieved
by mapping the geology and finding relations of various rock units, modern
technology now allows to construct models of the subsurface in great detail.
The data can then be displayed on a computer screen in order to understand
the geologic formation and detect features, that could indicate the presence
of oil and gas. One method that allows to acquire the data is based on
the use of sound waves, which travel through earth. Hence they are termed
seismic waves. Similar to ultra sound imaging in medicine, which depicts
the human body, the seismic waves can be used to depict the geological
structures of the earth. In comparison to the short wave length used in
ultra sound imaging, the seismic waves have a longer length, that allows to
reach areas many kilometers below the surface. The waves are generated by
shooting controlled pulses of sound into the ground. While the waves travel
through earth, a part of them is reflected at geological boundaries within
the subsurface and send back to the top. The reflected waves are picked
up by an array of recording devices. For example in marine environments,
the source for the sound are air guns, which fire pulses of compressed air.
The reflected waves are recorded with hydrophones floating on the water.
In a seismic survey onshore the sound is created by vibrating trucks and
geophones, that spread across the surface [26]. The diagram of a marine
seismic survey can be seen in figure 2.5.

HYDROPHONE HYDROPHONE

HYDROPHONE
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Wave

SEA BED

SANDSTONE , *

CHALK

Figure 2.5: Seismic survey with typical reflection and refraction wave patterns [50]

The reflection of a seismic wave is a so-called event. By measuring the
arrival times of the events at certain distances from the source with neigh-
boring detectors, the travel times of the wave can be converted into depth
values. Afterwards the distribution of the geological interfaces can be sys-
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tematically reconstructed. This method is qualified for mapping layered
sedimentary sequences and is thus frequently used in the search for oil and
gas. Additionally the lithology of a rock can be deduced, since the velocity
of the seismic wave changes depending on the type of rock that it travels
through [26].

One of these measurements corresponds to a seismic trace, which is a one-
dimensional, time-dependent function X (z,y,t). While z and y describe the
spatial position, ¢ is the travel time in the vertical direction. Note that there
are methods in seismic processing to convert this time into a depth value.
By combining multiple seismic traces in an array of equivalent distance, a
two-dimensional cross-section through the earth can be generated. Extend-
ing this idea to the third dimension results in a volume of the subsurface [44].
This volume is a field of scalar values, in which every value represents one
seismic amplitude. Each of the cells, which are also called vozels, relate to
the spatial coordinate of the respective seismic event. A comparison between
the different dimensionality of seismic data can be found in figure 2.6.

=

1D Seismic Signal 2D Seismic Slice 3D Seismic Cube

Figure 2.6: Comparison of 1D seismic signal, 2D seismic slice and a 3D seismic cube of
the F3 dataset [15]

The volume datasets differ in the number of bits, used to store the ampli-
tude information. While the processing of the measurements is done using
32 bits per data point, performance restrictions of the first interactive ap-
plications in the early 1980’s led to the conversion of the preprocessed data
to 8-bit [7]. This reduction minimizes the time of all computations and the
storage space required for the data. Today datasets with 8, 16 and 32 bit
are used. In case of 8-bit data, each voxel can take on a value between
—128 and 127. Values that fall above or below the range, must be clipped.
The amplitude is typically Gaussian distributed with a large number of zero
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amplitudes and only a small number of very low and high amplitudes. The
typical amplitude distribution can be seen in figure 2.7.

NUMBERS OF SAMPLES
A INDATA VOLUME

Clipped

-128 -128 0 +128 +128
<—— AMPLITUDE ——>

Figure 2.7: Statistical distribution of amplitudes in seismic data [7]

2.3 Seismic Attributes

The term seismic attributes describes all different kinds of information, ob-
tainable from the seismic dataset. This can either be through direct mea-
surements, or by applying logical- and mathematical operations to these [47].
One example of a seismic attribute, is the measured amplitude value at every
data point. Further attributes can be generated with specific procedures,
which typically base the calculation on information gathered during the
data acquisition. These can for instance be time, amplitude or frequency
values [7]. While attributes derived from time provide structural informa-
tion, the amplitude- and frequency-derived attributes impart stratigraphic
and reservoir information. Further attributes can be generated by utilizing
the rate of change of these parameters (i.e. derivations) in time or space.

Seismic attributes can be calculated before or after the stacking, which is
a process of averaging the data and eliminating offset related information
and directional aspects. Thus it is differentiated between pre-stack and
post-stack seismic attributes. The first group generates huge amounts of
data and is therefore not practical for a first initial study. Yet, the group
contains valuable information about fluid content or the orientation of frac-
tures and is hence very important for a detailed interpretation. The later
group offers a more manageable approach for observing the large amounts of
data, which is the reason why most seismic attributes are created this way.
Obviously, all of the previously mentioned parameters can be combined to
generate hybrids. The attributes are computed once in a preprocessing step
and are stored as an additional volume for later use. A variety of different

10
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attributes was proposed throughout the years and all of them have their in-
dividual strengths and weaknesses. For instance the instantaneous frequency
can lead to a better perception of faulted zones, while the phase gives a de-
tailed visualization of stratigraphic elements. The same seismic slice with
different attributes is displayed in figure 2.8. Subsequently a multitude of
attributes can be useful for the interpretation of a single dataset. A detailed
discussion on different attributes can be found in [47].

T IS

Amplitude Similarity Dip Azimuth

Figure 2.8: Seismic slice of the F3 dataset with different attributes [15]

All of the attributes used in the remainder of this thesis were generated with
the open-source seismic interpretation software OpendTect [16].

2.4 Anomalies in Seismic Data

Since the developed algorithm is based on detecting anomalies in different
regions of the dataset, this chapter introduces the term anomaly in the field
of seismic volume data and introduces multiple causes of these. Basically it
can be differentiated between two different types of anomalies in the seismic
domain. These are stratigraphic anomalies and amplitude anomalies. Both
are explained in the following sections.

2.4.1 Stratigraphic Anomalies

The first type of anomalies are stratigraphic ones. These are multiple kinds
of structural features, such as the salt dome that is explained in section 2.1.
Another example are unconformities, which are of fundamental importance
in the stratigraphic studies, as they provide a basis of defining the seismic
sequences [2]. In general they represent a period of non-deposition or ero-
sion, followed by resumption of deposition. They can easily be identified
through the angular relation between the unconformity plane and the over-
lying sediments. An example for an unconformity can be found in figure
2.9 Other structural feature of interest are horizons, which are horizontal
events without geometrical deformation. However, they can also be affected
by folding and faulting. The first of these events can happen in various

11
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Figure 2.9: Typical example of an angular unconformity [2]

degrees of intensity and lead to the distortion of the horizon to e.g. anti-
clines. Furthermore faulting, which is a break in the reflection event with
an additional shift in the vertical direction, can occur. These horizons are of
importance to the stratigraphic interpretation, as they help to understand
the geological processes of the earth. The folded and faulted horizons have
to be detected and the interferences removed. This process is known as mi-
gration [2]. Examples for the different horizon types can be found in figure

Figure 2.10: Examples of straight horizons (a), folded horizons (b) and one faulted hori-
zon (c) [2]

12
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2.4.2 Amplitude Anomalies

The Schlumberger Oilfield Glossary defines the term amplitude anomaly as

"an abrupt increase in seismic amplitude that can indicate the
presence of hydrocarbons, although such anomalies can also re-
sult from processing problems, geometric or velocity focusing or
changes in lithology." [29]

il

— — —

Figure 2.11: Bright spot on a seismic slice of the F3 dataset [15]

Generally those values higher than the average background amplitude lev-
els, can be considered an anomaly [48]. These higher amplitude values are
also referred to as bright spots, since they correspond to strong reflections
and lead to bright colors on seismic sections. One example for such a bright
spot can be found in figure 2.11. The spots can be produced by the pres-
ence of hydrocarbons in the rock formation and are hence also called direct
hydrocarbon indicators (DHI) [2]. This is due to the anomalous amplitude
change, that occurs at the edge of the accumulation, when the seismic wave
leaves the hydrocarbons and moves back into water-filled pores. Thereby
the seismic velocity is lowered, which leads to an increase in the reflection
coefficient [50]. The interpretation of the DHIs could be a direct solution for
the detection of hydrocarbons and could additionally support the investiga-
tion of lithology, which are both very important aspects of the interpretation
of seismic volume data. Nevertheless these bright spots do not always cor-
respond to the presence of hydrocarbons. Similar effects can be caused by
coal seams or porosity changes of different rocks [50]. Another cause is the
presence of artifacts, which are naturally not of interest for an interpreter.

13



3  Volume Data in Computer
Science

After the seismic data is processed, it can be displayed in a seismic inter-
pretation software such as OpendTect [16]. The processes of visualizing the
data and the interaction with it are described in this section.

There is a wide variety of techniques for generating images of a volume
dataset. Note that these methods are not restricted to the seismic domain,
but are frequently used in other scientific fields, as for instance in medical
applications. The basic rendering is to map a seismic slice onto a 2D plane.
This plane can then be moved through the dataset to display various slices.
Additionally the data can be visualized in 3D by using wvolume rendering,
which is a term that describes a whole range of techniques, that transform
the scalar values of the volume dataset into a colorful visualization. Modern
graphics processing units (GPUs) allow to use volume raycasting in real-
time, which is the most popular method in volume rendering [17]. This is
due to a high visual quality and the ability to adapt the visualization in-
teractively. The principle of raycasting is explained in detail in the next
section.

3.1 Volume Raycasting

The physical basis for volume rendering is a combination of light and the
effects occurring through the interaction with the medium. These effects are
for example emission, absorption and scattering. As the physically correct
computation of all of these is very complex, a simplified version called the
emission-absorption model is used for volume raycasting. In this model the
medium can emit and absorb light, while neglecting the scattering aspect.
This corresponds to the best trade-off between quality and time of compu-
tation. For background information on this model and the definition of the
so-called volume rendering integral used for raycasting, the reader is referred
to the respective chapter in [17].

The basic idea of raycasting is to cast rays from the camera’s point of view
through the volume. These viewing rays, which are handled independently
from each other, are used to compute the volume rendering integral along
their way. The definition of the integral is split up into multiple subsequent
intervals, realized by sampling each ray at equivalent distances. This prin-
ciple is clarified in figure 3.1. The contribution of color and transparency in
the respective intervals can be evaluated. Therefor the emission-absorption

14
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rays
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image
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Figure 3.1: Principle of raycasting [17]

model is used to compute a composite color and opacity for each ray. Addi-
tionally a single scattering effect is approximated with a local illumination
model, such as the Phong model [17]. The process of compositing solves the
discretized volume rendering integral iteratively. Commonly the method of
front-to-back compositing is used. It starts at the position of the camera
and samples the rays at equivalent distances on their way through the vol-
ume. For every sample the color Ci, consisting of three values for the color
channels red, green and blue (RGB), and the opacity ¢&; is calculated with

C’i = C'i—l + (1 — di—l) C;, (3.1)
G = a1+ (1 —di—1) oy

and the initialization of

Co = Cy, (3.3)

d() = Q. (3.4

Thereby Ci_1 and G;_q represent the accumulated color and opacity of the
previous calculations. The source color C; and the opacity «; of the current
sample can be determined by using a so-called transfer function, which is
explained in section 3.3. Equation 3.1 is applied on every sample, updating
the color and opacity along the way. The final results of these values are
obtained once the ray has left the volume.

3.2 Histograms

The frequency of all values in the domain can be represented through a dis-
crete function, which is called a histogram. In the context of volume data,
these frequencies are the total amounts of the respective values in the area.
The first step of computing a histogram is to partition the underlying data

15



Chapter 3 | Volume Data in Computer Science

space into a fixed number of n bins. Typically the number of bins equals the
value range, so that every voxel falls precisely into one bin. The resulting
quantized data structure is denoted as histogram H. Further h; describes
the quantity of voxels that have a value in the interval with the index ¢ [39)].
A large number of voxels with the same value corresponds to a homogeneous
region. Since the scalar values of the amplitude follow a Gaussian distribu-
tion, as described in section 2.2, the amplitude histogram is also Gaussian
distributed. Note that the histogram provides no information on the loca-
tion of voxels [37]. The amplitude histogram of the F3 dataset [15] can be
found in figure 3.2.

-128 0 127

Figure 3.2: Amplitude histogram of the 8-bit (signed char) F3 dataset [15]

A histogram reflects the distribution of values in a global sense. The peaks
correspond to those values, that are present in a large portion of the dataset.
Subsequently small features might not be noticeable in the global histogram.
One solution for this challenge is to generate a local histogram, which is only
covering a certain region of the dataset. The chance of detecting small fea-
tures in the local histogram is much higher, since they are not occluded by
the values only present in other parts of the dataset [37].

Another possibility of enhancing the expressiveness of a histogram is to
add a second dimension to it, resulting in a 2D Histogram. For example
another seismic attribute, which are described in section 2.3, could be used
as an additional dimension. The principle behind the 2D histogram resem-
bles the one-dimensional case. A two-dimensional array with size equal to
the number of possible values in the respective dimensions is used to store
the frequency of every combination of two values. The challenge of the
increased dimensionality is to find an efficient visualization of the frequen-
cies. Whereas the one-dimensional histogram relies on a simple bar chart,
the value ranges of the two attributes require already two dimensions and
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the height of the bars would have to be displayed in the third dimension.
However this visualization is not effective due to occlusions [37]. Another
approach is to map the value frequency to different gray values. A fre-
quency of zero can be represented by a white color and is thus not visible.
The highest frequency value can be displayed in black. Values in between
receive a linearly interpolated gray value [37]. Figure 3.3 shows on the left
a visualization of the 2D histogram between the amplitude and similarity
attributes of the F3 dataset [15]. On the right side is the exact same his-
togram without mapping the frequency to color. Instead every value that is
present in the dataset receives a black color. The huge difference between
the two histograms shows, that lots of values can get lost when visualiz-
ing the frequency. Thus it can be useful, to abandon the representation of
the frequencies and to display all of the present values in the same color.
Two-dimensional histograms can be used for a 2D transfer function, as it is
explained in section 3.3.2.

127 b 127
(a) v (b)

Similarity
o
Similarity
o

-128 0 127 -128 0 127
Amplitude Amplitude

Figure 3.3: Comparison of a 2D histogram with frequency mapping (a) and without

frequency mapping (b)

3.3 Transfer Functions

The abstract scalar values of the dataset cannot directly be used to deter-
mine the emission and absorption, as required for the volume raycasting.
Instead a transfer function has to be applied to define color and opacity for
the different data values [17].

3.3.1 One-Dimensional Transfer Functions

The transfer function uses the scalar data values of the dataset and assigns
optical properties to them, like a RGB color and an opacity. Thereby the
voxels are not mapped individually. Instead a piecewise function specifies a
whole intensity range at once. Such a piecewise function can be seen on the
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right side of figure 3.4. In the top left corner, the full dataset with its scalar
values interpreted as gray levels is displayed. After applying the transfer
function, the volume rendering contains colored and transparent parts, as
seen in the top right corner.

Figure 3.4: Transfer function editor with color table and corresponding volume visual-
ization

The transfer function can be adapted by changing the position of the control
points, shown in blue in figure 3.4. Additional points can be added to refine
the line segments and existing ones can be removed to coarse them [37].
Their position on the editor’s y-axis, determines the opacity of the corre-
sponding scalar value. The opacity of values that lie in between two control
points is determined by interpolating between these. Additionally a color
has to be defined for the scalar values. This can be done by defining a color
table with one entry for each possible value of the data range. Then the
scalar values can be used as an index to sample the table and retrieve the
respective color. This table should be shown in the editor, as it connects
the visualization with the underlying data values. In figure 3.4 the table
is displayed on the x-axis of the editor. As explained in [17] the histogram
can support the process of transfer function generation and should thus be
displayed in the background of the editor.

The transfer function design is a tedious and time-consuming procedure,
which requires a detailed understanding of the structures present in the
dataset [17]. In order to facilitate this process, changes of the transfer
function should be applied to the volume rendering in real-time as visual
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feedback. The transfer function can be represented as look-up table in form
of a 1D texture that can be evaluated for every sample while performing
the volume raycasting. Therefor the scalar value is read out of the volume
texture and used as a look up value to determine color and opacity. This
information can then be used to perform the front-to-back compositing.

3.3.2 Multi-Dimensional Transfer Functions

The one-dimensional transfer function assigns exactly one color and opacity
to a given scalar value. However it is not guaranteed, that different features
in the dataset also differ in their intensity. Hence a one-dimensional transfer
function cannot always be used to isolate features as required. One possi-
bility to deal with this issue is to expand the transfer function domain and
take into account further information of the volume data. This can for ex-
ample be another seismic attribute, which are described in section 2.3. The
aim is to improve the possibility of isolating distinct features in the volume
dataset. An example is shown in figure 3.5, where the dentin of the human
tooth is to be isolated in a medical dataset. The one-dimensional transfer
function, shown on the left side of the figure, fails at the given task as the
enamel boundary of the tooth has the same data value. The 2D transfer
function uses the gradient magnitude in addition to the raw data values to
isolate the dentin successfully, as it can be seen on the right.

1D transfer function 2D transfer function

Figure 3.5: Advantage of a 2D transfer function, when isolating the dentin of a human
tooth [28]

19



Chapter 3 | Volume Data in Computer Science

The drawback of using multiple attributes is that additional dimensions
leads to an increase of effort in the transfer function design. Furthermore
the implementation of an appropriate user interface for the editor is more
challenging, when dealing with multiple dimensions that have to be visual-
ized. The key is to find a balance between sufficient flexibility and reduced
interaction effort [37]. Since the option to use control points is not sufficient
anymore, another method of selecting the visible values is required. Typ-
ically the 2D histogram is visualized, as described in section 3.2 and can
be used as basis for an editor [37]. Simple primitives, such as rectangles,
trapezoids and triangles, can then be applied to the histogram to select the
desired values. These primitives can be modified in position and size. Only
values that are on the inside are visible in the volume rendering. Addi-
tionally a color and opacity can be assigned to each primitive. Respective
values are then visualized with these optical properties. An example of a 2D
transfer function editor can be seen in Figure 3.6. In this case the look-up

A Gradient Magnitude
e T T

fﬂil um

Intensity

Figure 3.6: 2D transfer function editor [37]

table for the rendering also needs to be two-dimensional, with width and
height matching the resolution of the histogram. During the ray traversal
the two volume datasets of the attributes have to be sampled at the current
position and the combination of the two values is used as coordinate for the
look-up table. The stored color and opacity are read out of the texture and
applied to the current voxel.

The idea can be extended to beyond two dimensions in the transfer function.
Though with every additional dimension the representation of the editor and
the interaction with the values get more complicated.

3.4 GPU Computing

The developed algorithm depends on a fast execution. Hence GPU com-
puting with CUDA [13] is an important part of the implementation and is
introduced in this chapter.
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GPU computing covers a range of approaches to utilize the computational
power of GPUs for calculations, which do not necessarily have to be graphics-
related. Modern GPUs are highly optimized data-parallel streaming pro-
cessors. In comparison to the central processing unit (CPU), they do not
execute a sequential program. Instead multiple threads run in parallel and
cooperate to accelerate the execution. A couple of constraints hamper the
application of the GPU for general purposes. Since it was originally designed
for accelerating graphical operations, the logic of the computation has to be
adapted to data types usable in the context of the graphics API. With the
rising popularity of GPU computing, multiple APIs, such as CUDA, were
introduced to facilitate the communication with the GPU and to utilize its
computational capabilities.

The modern architecture of the GPU contains multiple components that are
specialized on allowing easier access to its power for general purposes [40].
CUDA is based on the C programming language, extended by additional
keywords for special features of the CUDA architecture [40]. The program-
ming model is based on a combination of CPU and GPU code. As most
of the code of an application tends to have a sequential nature, the per-
formance of the GPU can complement these parts. The CPU is therefore
called the host, while the GPU is referred to as the device.

A CUDA program consists of one or more phases without data-parallelism
implemented in the host code and phases with parallelization called ker-
nels. The kernels are executed on the GPU in numerous threads. All the
threads generated by a kernel form a grid. When all threads have completed
their tasks, the grid terminates and the host continues the execution of the
program. Thereby it is important, that all threads must execute the same
kernel function. The grid is organized in a two-level hierarchy, which is also
illustrated in figure 3.7. As it can be seen, the threads in the grid are ar-
ranged in multiple blocks. Note that the number of blocks and threads is
typically way higher, but was minimized for the sake of illustration. Hereby
it is important, that each block contains the same amount of threads. In the
example, grid one consists of a two-dimensional array of 2 x 2 Blocks, each
containing a three-dimensional array of 4 x 2 x 2 threads. In general blocks
and threads can be arranged in three dimensions, but not all three of them
have to be used. The operations in the kernel can make use of the respective
thread number, so that every thread processes the correct portion of data.
Therefor built-in variables are provided, containing the index of the active
thread or block and the dimensions of the grid and the blocks respectively.
The global index of the thread can be calculated with these variables and
used to access the correct part of input data, needed to perform the opera-
tions.
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Figure 3.7: NVIDIA CUDA grid architecture [27]

One of the challenges of GPU computing is to design the application in
a way, that the limited on-chip memory can store the data needed for the
computations. Furthermore the restriction to certain data types and the
low-level programming hamper the application design and the paralleliza-
tion of the computations. But if these obstacles are overcome, the capabili-
ties of the GPU can provide an enormous performance boost. However, the

CPU still performs better on sequential tasks than the GPU. Thus GPU
computing is not a panacea [27].
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The idea of detecting important regions and features in volume data is not
new. This chapter introduces related approaches, which helps to classify
the contributions of this thesis thematically. At first a distinction to other
methods of automating the seismic interpretation is done. Afterwards the
basics of comparing histograms via distance measures are explained and
some examples of the practical application are given.

4.1 Distinction to related approaches

In contrast to the semi-automatic approach developed in this thesis, an al-
ternative is to rely on a fully automatic interpretation. One method for that
is the technique known as Deep Learning, which has recently gained popu-
larity and is now one of the biggest areas of research in computer science [5].
When it comes to deep learning, the computer learns to solve extremely big
and complex problems, achieved by utilizing a so-called neural network that
mimics the processes of the human brain. The network learns to solve a
task by training on classified, ground-truth input data. It uses this data in
a complex training step, to learn how to classify the input. This training
step is based on the minimization of a cost function with millions of param-
eters. Thus finding the minimum of this function is not an easy task and
requires time. After the ability of decision making was trained, the network
can be used to classify unknown, real-world data [5]. Deep learning was
mostly used in image processing and pattern recognition tasks, such as the
identification of traffic signs in the automotive industry. But the method
can also be applied to the use of volume data as shown in [23]. One example
of the results on seismic data can be found in figure 4.1, where a neural
network was trained to detect fault and channel structures. The images in
the top row show the targeted features on time slices of the Parihaka [42]
and F3 [15] datasets. Channels are included in the red bounding boxes and
faults in the blue ones. The bottom row shows the results of the detection,
using the same color coding. One can easily see, that the targeted features
were detected by the neural network. Yet there are some false positives in
between.

The big challenge of deep learning in the seismic domain is the lack of
annotated data for the training process. This is due to the high value of the
data to the oil and gas industry. While the companies own a huge amount
of datasets, only a couple of them are available to the public. Hence the
amount of training data is insufficient, compared to the millions of samples
that are usually needed to train a neural network with satisfying results [23].
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But the pure collecting of data is not enough. Experts have to interpret and
label the data, which is very time-intensive. The shortage of training data
might impair the reliability of the detection capabilities of the neural net-
work [5]. Another drawback of deep learning is that the network has to be
trained specifically on certain features to detect. The required training data
has to be adapted towards the targeted feature. A valid training dataset
could for example consist of 300000 samples of seismic slices containing a
fault and negative examples without this structure [23]. For every addi-
tional feature that the network should be able to detect, new training data
has to be generated. However, if a neural network has been trained and is
reliable, a human expert would only be required to approve the results of
the neural network. This could drastically reduce the time of the interpreta-
tion. Thus this approach is very promising. The deep learning approach is

Figure 4.1: Targeted features (top) and detection results of a neural network (bottom)
[23]
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a supervised learning method, as it is based on labeled training data, which
can be categorized into known classes. An alternative is to use an unsu-
pervised learning algorithm, that utilizes unlabeled data to predict the class
membership. This is done by automatically identifying patterns and natural
clusters in the data distribution. Unsupervised learning can also be used to
detect certain geological features, as it was shown in [32] for the detection
of channels, which are concave streams of water and sediment [29]. These
channels are important to detect during the seismic interpretation as they
can cause the formation of stratigraphic hydrocarbon traps. One enhance-
ment of the unsupervised learning method is to increase the value of the
results by incorporating additional a priori information. Such an approach
was presented in [30] and covers a whole workflow for using machine learn-
ing for seismic quantitative interpretation. Domain knowledge is included
in the unsupervised learning to speed up the training process and to allow
for a better conclusion on hydrocarbon properties.

But the learning-based techniques are not the only possibility of automat-
ing the interpretation. Other automatic approaches were optimized to fulfill
specific tasks. One example is the automatic interpretation of all faults, un-
conformities and horizons in 3D seismic data, as shown in [51]. The idea is to
perform a processing procedure to automatically extract all aforementioned
structures. Stepwise results can be seen in figure 4.2. Thereby faults are
extracted at first, as they complicate the extraction of horizons, which are
interrupted by the faults and can otherwise not be identified easily. Then
the detected faults are reversed, which can approximate the earth’s state
prior to the faulting. Afterwards the unconformities and finally the hori-
zons are extracted [51]. The algorithm is mostly based on image processing
techniques. Note that the complex processing chain can only be executed in
this order and only the three mentioned structures can be found using this
technique. One drawback of the method is, that the features cannot always
be detected. For example faults and unconformities can only be found if
they occur in a specific direction [51]. The limitation of the approach to
these specific structures imply, that this approach is not generic. Yet it is
useful, when applied during the interpretation of these features. There are
other related approaches working in a similar way, but are specialized on dif-
ferent structures. Examples are the automatic detection of fault surfaces [9]
or horizons [36].
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Figure 4.2: Processing chain to detect faults (a) and reverse them (b), find unconformi-
ties (c) and model the horizons (d) [51]

4.2 Comparison of Histograms with Dissimilarity
Measures

As the approach of this thesis is based on comparing local histograms of
different regions, the type of comparison has to be defined. This section
introduces the basic principle of calculating the similarity of two histograms
and gives an overview of their usage in different scientific fields.

4.2.1 Theoretical Background

Given two histograms, it can be useful to compare their similarity for dif-
ferent reasons. Several measures were proposed throughout the years and
an overview of different options is given in this section. A detailed compre-
hensive survey of histogram dissimilarity measures can be found in [8]. The
dissimilarity measures for the comparison of two histograms can be divided
into two groups bin-by-bin and cross-bin. These are explained in this section
and some representative examples are given. To ensure the consistency of
the notation introduced in section 3.2, the histograms are denoted as H and
K and the quantity of voxels in the bin with index ¢ is given by h; and k;
respectively. The variable n represents the total number of bins.
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Bin-by-bin Dissimilarity Measures

The group derives its name from only comparing histogram bins with the
same index. The dissimilarity between two histograms results from the
comparison of all pairwise differences. It is important to note, that these
measures have the characteristic to differ from perceptual similarity. One
specific example can be seen in figure 4.3, where the L, distance (comp. eq.
(4.1)) is calculated between both of the left and right distributions respec-
tively. The left comparison results in a higher dissimilarity than the one on
the right. In contrast the visual perception is that histograms Hy and Ko
are less similar.
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Figure 4.3: Divergence between bin-by-bin dissimilarity and perceptional similarity [39
[=) . ' J

The first example for this group is the Minkowski-form distance dy,., which
is calculated with

n—1
dr,(H,K) = | (Z |h; — ki|r>- (4.1)

=0

The value of r has to be specified with respect to the type of application.
The L; distance was often utilized for the comparison of color images [39].

Another prominent example is the Chi-Square Distance d,2. It can be cal-
culated with

n—1 2
(h;y —my)
de(HK) = B (4.2)
i=0 g
and _—
m = bt (43)

Having its origin in the domain of statistics, this distance measures how un-
likely it is that one distribution was drawn from the population represented
by the other [39].
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Another important representative is the Jeffrey divergence dj, which is not
sensitive to the binning of the histogram and is robust with respect to noise.
It is defined as

n

z_:l <h log — + k;log k> (4.4)

i=0 mi

.

where m; is again calculated with

(4.5)

Cross-bin Dissimilarity Measures

In contrary to the first group, the cross-bin dissimilarity measures also con-
tain terms that compare non-corresponding bins. The results of these dis-
similarity measures are perceptually more meaningful [39]. One example is
the Match distance dys. It is calculated with

dy(H,K) = Z“Ali_]%i’a (4.6)

where h; and k; are the frequencies of the bins in the cumulative histogram,
in which every bin contains the sum of all bins in the original histogram
with a smaller or equal index. More precisely, the frequency h; at the bin
with index 7, is calculated with

hi =Y hj. (4.7)

j=0
Through incorporating the cumulative histogram H into the calculation, the
cross-bin characteristic can be ensured since every bin contains information

on multiple bins of the original histogram.

Another example for the group of cross-bin dissimilarity measures is the
Kolmogorov-Smirnov distance dgg, which is calculated with

dxs(H, K) = max(|h; — k;|). (4.8)

The resulting dissimilarity is the maximum difference between two corre-
sponding bins h; and k;, found in the cumulative histograms H and K [39].
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4.2.2 Feature Detection with Dissimilarity Measures

The idea of detecting certain features by utilizing the dissimilarity measures
is not new and was used in image processing tasks before. Some of these
approaches and their results are presented in this section.

The work by Rubner et al. [39], which also introduces a new distance met-
ric called the FEarth Mowver’s Distance, is a good example for the task of
content-based image retrieval. The objective is, given an input image, to
detect images with similar content in a database. Therefor a distance mea-
sure is calculated between the histogram of the input and histograms of the
different images in the database. Comparisons returning a small value are
assumed to contain a similar object. The performance of multiple dissim-
ilarity measures on the given task can be seen in figure 4.4. One can see
the eight most similar images to the input image of a red car shown on the
left. These were selected through resulting in the lowest dissimilarity values,
when compared to the input image with the respective metric. The dissim-
ilarity measures have indeed detected a couple of other pictures containing
a red car. However, some false detections with a similar color distribution
were selected by the algorithm. For example the pictures of the leafs contain
a lot of yellow and green colors, that can also be found in the background
of the input image.
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Figure 4.4: The eight most similar images to the leftmost image of a red car, detected
with different dissimilarity measures [39]
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While this comparison uses dissimilarity measures to find images with sim-
ilar content, another approach is to search for a high distance between two
histograms in order to detect divergences. This idea was utilized in [33] to
detect natural image boundaries. The idea is to estimate the probability of
the presence of a boundary per pixel. Therefor a local region around each
pixel is divided into two halves and the local histograms of these parts are
compared using the y? distance (comp. eq. (4.2)). In case of a boundary
the textures on both sides are different. Hence a high dissimilarity value in-
dicates the presence of an edge [33]. Results of the boundary detection can

08

{104

Detected boundaries

Figure 4.5: Automatic detection of image boundaries using local histograms [33]

be found in figure 4.5. There the top row presents the original images and
the bottom row shows the result of the boundary detection. The intensity
of the lines corresponds to the estimated probability of the presence of a
boundary. Darker values imply a higher chance of having detected a border.

Another approach of searching for outliers in the data was presented by
Asha et. al in [3]. Their aim is to detect defects on periodically patterned
textures for the application in the automatic quality control of the fabric
production. An image taken from the monitored fabric is split into several
periodic blocks of equal size. Then the x? distance (comp. eq. (4.2)) of each
block’s histogram to all other periodic blocks is calculated. The result is a
matrix containing the absolute dissimilarity for each of the blocks. Then a
hierarchical clustering algorithm is used to extract defective and defect-free
clusters. The results of the algorithm can be seen in figure 4.6. On the
left, the defect input image can be seen. In the center the detected defects
are visualized. The rightmost picture overlays the original image with the
defects.
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(a) (b)

Figure 4.6: Detection of defects in a fabric image [4]

One drawback of the approach is, that the number of defective units must al-
ways be less than the number of defect-free blocks. Otherwise the algorithm
cannot detect, which of the blocks belong to which category. Furthermore,
the test images have to be taken exactly perpendicular to the surface of the
fabric. The advantage is however, that quality control in the textile industry
normally requires high labor costs and skilled inspectors. These costs can
be saved and inspection time can be reduced by using an automated system.
Finally the approach does not require a training sequence with defect-free
samples, as it is often the case for techniques based on machine learning.

As presented in the previous examples, dissimilarity measures were already
used in the domain of image processing and feature detection. However,
they were barely used in context of volume data. One approach, proposed
by Karimov et al. in [25], uses dissimilarity measures on the result of an
automatic segmentation of the volume dataset, to detect potential defects.
For each of the segmented objects, one region is derived from structural
information, extracted from the results of the initial segmentation. Such a
region is identified by using the skeleton of the object. This skeleton can for
example be generated by iteratively removing surface voxels under geomet-
rical and topological constraints until only the basic structure of the dataset
remains. It is used to construct influence zones, for which local histograms
are calculated. Then the L; dissimilarity measure (comp. eq. (4.1)) is cal-
culated between individual regions to detect those, which have a potential
of belonging to a segmentation defect.

The approach reduces the interaction effort, as a user only has to approve
the essential corrections, suggested by the algorithm in multiple steps. Oth-
erwise the whole correction would have to be conducted manually [25]. An
example can be seen in figure 4.7, which shows the input dataset (a), the
results of the initial segmentation (b), one of the suggested correction steps
(c) and the corrected segmentation (d).
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(c) (d)

Figure 4.7: Elimination of defects in automatic segmentation [25]

The second approach using dissimilarity measures in the domain of volume
data, deals with the segmentation and visualization of electron microscopy
data [22]. Cell membranes in the dataset are segmented by using an active
ribbon approach, which has to be initialized by a user through painting a
rough approximation of the boundary on one of the slices. Combining these
2D segmentations, a centerline of a neural pathway can be traced through
the volume [22]. To support the process of initializing the segmentation, the
application provides a volume rendering of the dataset. This way the data
can be inspected and regions of interest can be identified. The visualization
is improved with a special edge enhancement. Using a dissimilarity measure
on local histograms, the opacity of the rendering can be adapted to enhance
boundaries and to suppress more homogeneous regions. This supports the
navigation through the unsegmented dataset and the search for an initial-
ization point of the segmentation [22]. An example of the edge enhancement
is displayed in figure 4.8. The top row shows the original dataset as a fully
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(b)

(d)

Figure 4.8: Edge enhancement in volume data based on local histograms [22]

opaque block in (a) and with transparency in (b), while the bottom row
depicts the strengthened edges of the block in (c¢) and with transparency in
(d). The edge detection algorithm is based on the 2D approach presented
in [33], which is introduced earlier in this section. For every voxel a prob-
ability of containing a boundary is calculated [21]. A block neighborhood
around each voxel is used to calculate the brightness gradient for different
directions. The size of the neighborhood can be adjusted to match the reso-
lution of the input data. Then it is separated along the given direction into
two halves and a local histogram is calculated for each of the half-spaces. Fi-
nally the difference between these two histograms is computed using the x?2
dissimilarity measure (comp. eq. (4.2)) [22]. If the histograms are dissimilar
an abrupt change in the brightness of the volume is detected, indicating the
presence of a boundary. If the histograms are similar, both half spaces have
no edge between them. Finally for each voxel the maximum difference of
all boundary directions is stored and used as the boundary value. During
raycasting this value is used to modulate the opacity and color of the given
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sample. The advantage of this method of edge detection is, that it works
well with noisy data and arbitrary neighborhood sizes. It allows to high-
light the boundaries of the axons, which are the target of the segmentation
and have to be easily identifiable to set a starting point for the segmenta-
tion. While this is normally a time-intensive process, the approach works
in semi-automatic fashion. The user simply has to initialize the automatic
segmentation. The dissimilarity measures are used to assist the selection of
an appropriate starting point by enhancing the edges of different regions.

As described in this chapter, the comparison of (local) histograms with dis-
similarity measures were not evaluated in the context of feature detection
in volume data. Further it was shown, that a similar approach is able to
detect anomalies and important features in the domain of image processing.
Thus utilizing a similar technique to detect regions of interest in volume
data is a promising approach. The conception of a corresponding algorithm
is presented in the following chapter.

34



5 Detection of Anomalies

As described before, the aim of this thesis is to develop an algorithm that
detects interesting regions automatically and presents them to a user in com-
bination with diverse supporting tools. This chapter lists the requirements
and conception of the algorithm and explains the individual steps in detail.

5.1 Conception and Requirements

A couple of requirements for the algorithm have been defined in collabora-
tion with the members of the VRGeo Consortium [11]. At first the speed of
the execution is of major importance. The algorithm can only be efficient
in providing a first overview, if it can be executed in less than a couple of
minutes. Otherwise the benefit of saved time would be reduced by a long
runtime. Another major point is the reliability of the detection. Important
regions must be detected reliably and entirely. Additionally the contained
anomalies have to be of importance for the interpretation task. Further-
more the detection should be feature-independent and include all different
kinds of relevant structures. Finally the results of the algorithm have to be
reproducible.

The next step is to decide on the type of feature detection. During in-
terpretation the geophysicist is looking for an anomaly in relation to the
surroundings [50]. Therefore it might be useful to detect these anomalies
by comparing regions in the dataset to their respective neighborhood. The
anomalies manifest themselves through a local variation of parameters, rel-
ative to some background value [26]. These parameters are for example the
different seismic attributes. Hence the local variation might be noticeable
in the distribution of data values and thus in the local histogram. As a
consequence, the local histogram of each region in the dataset should be
compared to the local histograms of the neighborhood, which is the founda-
tion of the developed algorithm.

In section 4.2.1 the basics of dissimilarity measures are explained, which cal-
culate the difference between two histograms. These dissimilarity measures
can be used to compare the local histograms in a neighborhood. Different
dissimilarity measures are possible and the one to use should be selectable
by a user. As it is discussed in section 2.3, different attributes have dif-
ferent strengths and weaknesses. The combination of two attributes could
increase the chance of detecting important features. Thus the algorithm
should also be able to compare local 2D histograms. Either one or two seis-
mic attributes should be selectable as input for the algorithm. In theory a
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comparison of even higher dimensional histograms would be possible, but is
out of the scope of this thesis and could be a subject for further research
once the approach has proven to be successful.

The next step is to define the type of neighborhood. It can be expected that
anomalies are detected likely, when they occupy most of the current region
and are absent in the neighborhood. This way the dissimilarity of the local
histogram to all histograms in the neighborhood is very large. Hence the
regions should be adapted dynamically to the present data values. Therefor
the dataset has to be divided into bricks of varying size.

In order to increase the chances of comparing the anomalous brick only
to surrounding bricks not containing the anomaly, multiple kinds of neigh-
borhood can be defined. The first one takes all possible directions into
account and is called the 26 Neighborhood. Another option is to restrict the
comparison to certain directions. For example the horizontal neighborhood
compares the current brick only to adjacent bricks, which are found in the
horizontal = and y directions. Similarly the vertical neighborhood uses only
bricks in vertical direction ¢ for the comparison. The different types can
also be seen in figure 5.1, where the colored brick is compared to the neigh-
borhood. Accordingly the black and white bricks are utilized as neighbors,
while the ones not used in the comparison are hidden.

26 Neighborhood Horizontal Neighborhood Vertical Neighborhood

Figure 5.1: Different neighborhood types

It is likely that the type of neighborhood has a huge impact on the results.
Different neighborhoods might be capable of detecting different features,
depending on the structural spreading. For instance the vertical neighbor-
hood might have a better chance detecting seismic horizons, as they spread
in horizontal direction and the values vary in the vertical direction. On the
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contrary the horizontal neighborhood might not be as adequate, as there is
not a big change of values to be expected in horizontal direction. Thus the
type of neighborhood should also be selected by a user.

The neighborhoods explained above are the ones, that are implemented in
the application and can be used for the algorithm. These neighborhoods
were selected, as they have approved in context of image processing with
seismic data. For instance the horizontal neighborhood was used to identify
fault surfaces [9] and horizons were detected by using the vertical neighbor-
hood [36].

With the definition of distance measure and neighborhood, the local his-
togram of every brick can be compared to local histograms of the neighbor-
hood using dissimilarity measures. The bricks with the highest dissimilarity
value to their neighborhood are most likely to contain anomalies. This makes
the algorithm dividable in three sequential steps, which are:

1. Recursive subdivision of the dataset.
2. Comparison of each brick to the selected neighborhood.

3. Creation of a ranked list of bricks, sorted by their dissimilarity.

An overview of the algorithm, including the required user input, can be seen
in figure 5.2. The three individual steps shown in gray boxes in the figure, are
explained in detail in the next sections. The algorithm was presented during
the meetings of the VRGeo Consortium multiple times and was evaluated
and refined in close collaboration with the delegates of the consortium.

Selected
dissimilarity
Input: measure Subdivided
Attributes of dataset dataset

For every brick:

Calculation of Selected
dissimilarity neighborhood

to all neighbors

T@

Recursive
octree generation

[€<— dissimilarity
measure

— X .
Sorting bricks into

o —— s

: — ranked list

Output:
Sorted list of bricks with
highest dissimilarity

Figure 5.2: Overview of the proposed algorithm




Chapter 5 | Detection of Anomalies

5.2 Recursive Octree Generation

In order to calculate a dissimilarity value to the surroundings for every re-
gion, the size of these has to be defined. Thereby the brick size is adapted
dynamically to the present data. This has multiple advantages, especially
compared to the alternative of a user-defined, static brick size. At first,
equally sized bricks not fitted to the data might be either too big and miss
small anomalies, or be too small so that the anomaly would also be present in
bricks of the neighborhood. Furthermore it is beneficial, that no user input
is required for defining the brick size. The size might be hard to determine
manually, through the huge amount of possible value combinations. Thus a
better approach is to fit the brick size to the data in an automatic manor.
Therefor a recursive subdivision of the whole dataset can be done, until the
grid fits the local data values optimally. The aim is to automatically set the
borders of the bricks in such a way, that the anomalies of unknown location
are isolated and fill up a huge portion of one brick. Further subdivision
would lead to the division of the anomaly into multiple bricks and should
be avoided. The optimal case would be a brick consisting mainly of the
anomaly, which is not present in the adjacent bricks. That way the result is
a high dissimilarity value to all surrounding bricks. For further clarification
of this idea, an example of the subdivision is provided within figure 5.3.

‘ A l I
T
[ 255 0 255 0 255 0

Level 0 Level 1 Level 2 Level 3

Figure 5.3: Simple example for the isolation of an anomaly through recursive subdivision

For the sake of simplicity the volume dataset is shown from the top, so the
third dimension is not visible in the illustration. The original dataset visible
on the left of the top row, consists of Gaussian noise and contains an anomaly
in the upper right part. The first three levels of the recursive subdivision
can be seen towards the right of the figure. With every additional level, the
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anomaly occupies more of one brick. The local histograms in the lower row
belong always exactly to the brick containing the anomaly. One can easily
see, that with each subdivision the local histogram diverges further from the
Gaussian distribution. In level three the anomaly fills the whole brick. The
comparison of the anomalous brick’s local histogram shown in the top right
hand corner of the illustration, to the still Gaussian distributed local his-
tograms of the surrounding bricks, results in a high dissimilarity. This way
the anomaly can be detected. Additional subdivisions beyond level three
would be pointless, as the anomaly already fills the whole brick and another
subdivision would not change the local histograms any further. In fact, it
could decrease the chances of detecting the anomaly, as it might be split up
in four bricks, which reduces the irregularity on a local scale.

A suitable method for the dynamic generation of the bricks is to start with
the whole dataset and subdivide it recursively. The so-called octree, which is
a hierarchical data structure based on the decomposition of the underlying
space, is the optimal data structure for the bricks. Recursive subdivision
divides the dataset into eight sub-volumes. Every node in the octree has
either eight non-overlapping children, or is a leaf node [49]. The subdivision
is initialized at the root node of the octree and thus with the whole dataset
and the global histogram. The procedure of the subdivision is as follows.
The size of the brick to be partitioned is divided by two in x,y and the verti-
cal direction ¢. This results in eight equally sized sub-bricks, which become
the eight children of the current node. For each of these sub-bricks the local
histogram covering %th of the voxels of the parent brick is calculated. Then
the user-defined distance measure is evaluated between the local histogram
of the sub-brick and the global histogram of the root node. Note that these
can either be 1D or 2D histograms, depending on the chosen attributes.
The resulting distance is saved in the respective child node. Afterwards the
eight children are used as input for the subdivision. Again for every one of
these, eight sub-bricks are created and the local histogram and distance to
the global histogram are calculated and stored. This procedure is repeated
recursively, until a user-defined maximum of octree levels is reached. This
value should on one hand be high enough to allow anomalies to occupy a
huge part of the bricks, and on the other hand be small enough so that the
resulting local histograms are meaningful. Additionally the runtime of the
algorithm is highly depending on the number of octree levels. The amount
of nodes in the octree grows exponentially with every further level. Thus
limited hardware storage and processing power might restrict the possible
number of octree subdivisions.

After this step the octree has been recursively subdivided, until the user-
defined maximum depth is reached. At this point, every node stores the
dissimilarity value of the comparison between its local histogram and the
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global histogram. Yet all of the bricks are still of equal size. In order to
reduce the brick size in the homogeneous parts, some paths of the octree
are merged again. The calculated dissimilarity to the global histogram is
used as an indicator. Starting with the layer above the leaf nodes, the eight
children of every node are only kept, if at least one of them contains the
maximum dissimilarity along the path from it up to the root node. Other-
wise the eight children are merged and the corresponding nodes are deleted.
Then the same validation is performed on the parent of the current node.
The subdividing and subsequent merging is necessary to ensure, that the
octree level with the global maximum is chosen. Otherwise the recursive
subdivision could just be stopped when the dissimilarity to the global his-
togram does not increase further. But there is a chance of having detected
a local maximum, while further subdivisions would reveal a level with an
even bigger dissimilarity. The recursive subdivision of the simple example,
provided within figure 5.3, can be seen before and after the merging-step in
figure 5.4. One can easily see, that the dataset is only subdivided around
the anomalous part.

— merge —»

Figure 5.4: Merging process of the recursively generated octree

Note that the octree subdivision must not be carried out by using a normal
histogram. Instead relative frequencies have to be used, since the com-
pared histograms do not cover equally sized regions of the dataset. The
relative frequencies can be calculated through dividing every frequency in
the histogram by the number of voxels inside the brick. More precisely, the
frequency h; of the relative Histogram H at index 4 is calculated with

- 1y
hi = ———, (5.1)
-y -t
whereby x;,y; and t; are the dimensions of the brick, which the local his-
togram covers.

After the whole octree has been traversed and every path has merged all
children below the global maximum level, the dataset is covered with bricks
of different sizes. The next step is to figure out, which bricks differ from the
adjacent bricks. This procedure is explained in the next section.
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5.3 Calculation of Dissimilarities

In the second step, for each of the differently sized bricks in the octree, a
value of dissimilarity is calculated. This value describes the amount, by
which the brick differs from its surroundings. For that process, the selected
neighborhood type is used as input to the algorithm.

Usually the neighborhoods are defined for exactly one adjacent brick in ev-
ery direction, which holds true for a uniformly sized grid. In the described
case, the octree is dynamically generated and the bricks do not have the
same size. Therefore the number of adjacent bricks in one direction can
vary, depending on the level of subdivision. Hence the neighborhood types
have to be adapted in order to fit the dynamic grid size of the recursive
octree. The idea is to utilize every brick, which is directly adjacent to the
current brick. If the level of octree subdivision in that direction is equal or
lower than the level of the current brick, only one directly adjacent neighbor
is present. The dimensions of this brick might be bigger than the current
one due to less subdivisions in that region. However this does not affect
the procedure of the comparison in any way. Otherwise, if the octree in the
target direction has a higher level of subdivision, the number of neighbors in
that direction is 4(tn—Le) where L, is the level of subdivision of the neigh-
bor and L. is the level of subdivision of the current brick.

The selected neighborhood type can be used to calculate the dissimilar-
ity of every brick. Therefor the chosen distance measure is applied to the
local histograms of the current brick and each neighbor individually. The
total dissimilarity d of the current brick ¢ calculates with

d, =1 (S d(H,, H,;)) , (5.2)

c:ﬁ
1=0

where n is the number of valid neighbors. Note that the comparison is in-
dependent from the amount of adjacent blocks in the neighborhood, as the
dissimilarity to each brick is calculated individually and averaged afterwards.

In addition to the total dissimilarity values of the bricks, some information
is required for the visualization and needs to be stored during the execution
of the algorithm for later use. The usage of this data is described together
with the visualization in detail in chapter 6. One of these features is a glyph,
that shows the direction of most dissimilarity. To determine this direction,
the center points of all neighbors are weighted. This results in one final po-
sition in the dataset. The weights are determined by the amount to which
the single dissimilarity contributes to the sum of all dissimilarities. Using
the averaged point of dissimilarity, a vector from the center of the current
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brick to this point of high dissimilarity can be calculated. This vector can
be visualized with a glyph, as it is described in section 6.2.

Further information used to enhance the visualization, is the dissimilarity of
each bin of the local histogram to the bins of the neighboring histograms. In
other terms, the bin dissimilarity describes for every bin, by which portion
it contributes to the total dissimilarity of the brick. These bin dissimilarities
can be visualized in the local histogram to provide additional information.
Furthermore these values can be used to create an automatic transfer func-
tion. More details on both features can be found in section 6.3. The values
are calculated during the comparison of a brick to the neighbors. In case of
the bin-by-bin dissimilarities, one value of dissimilarity is calculated for each
pair of bins. Then these values are summed up, which results in the final
dissimilarity between the two histograms. During this process the interim
results of each of the bins can be stored, prior to calculating their sum. As
every comparison between the current brick and one of the adjacent bricks
produces one dissimilarity value for each bin, these are added up and nor-
malized to result in the final bin dissimilarity.

Now that the dissimilarities have been calculated, the final step of the algo-
rithm is to determine the most anomalous bricks.

5.4 Sorting of Results

After the previous step, one total dissimilarity value has been calculated for
each of the bricks. Finally the task is to search for those with the highest
values and to rank them accordingly. All leaf nodes of the octree correspond
to bricks, that have been compared to their neighborhood. Therefor these
are sorted into a ranked list by their total dissimilarity. The highest ranked
brick of the list has the biggest value of dissimilarity, while the last entry of
the list is not very different from the neighborhood. This ranked list is the
final result of the algorithm and is used for the visualization of the results,
as it is described in chapter 6.

5.5 Export and Import of Results

The ranked list of bricks can also be used to export the results of the algo-
rithm. For each of the bricks the size, position and the information needed
for the visualization, such as the direction of biggest dissimilarity and the
bin dissimilarities, are known. All of these values can be exported and re-
imported again when restarting the software. That way a user can return
to the interpretation at a later point in time, without having to re-run the
algorithm.
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The possibility to export the results is provided within the GUI and is en-
abled after the algorithm has finished. During the export, a special file
format (.safd) is used to store the information needed to recreate the visu-
alization in the software. Afterwards this file can be imported, to recreate
the state of the software. This way the interpretation of the results can be
continued.

5.6 Generation of a Seismic Anomaly Attribute

Additionally the results of the algorithm can be used to generate a new
seismic attribute. This attribute can be understood as a kind of Anomaly
Attribute. 1t is generated by mapping the rank of each brick to the value
range of the data type. All voxels inside of one brick receive the same value,
which allows to recognize the underlying brick structure in the attribute.
The export is done by using the SEG-Y format [45], which is the open stan-
dard for seismic datasets defined by the Society of Exploration Geophysicists
(SEG) in 1975. Besides the actual data, it contains a header with useful in-
formation, such as the dimensions of the dataset and the coordinate system
that it is defined in.

While the export and import functionality described in the previous section
allow to return to the results of the algorithm within the proposed applica-
tion, the generated attribute can be imported in most seismic interpretation
software packages. This way the results of the algorithm can be reused in
these, to support additional interpretation tasks. Most interpreters use a
variety of software packages, as they all have their strengths and weaknesses
and are suitable for specific tasks. By allowing the results to be imported in
different software packages, the presented algorithm can be integrated into
the seismic interpretation workflow more seamlessly. However, information
such as the bin dissimilarities and dissimilarity vectors cannot be integrated
into a SEG-Y attribute and are only available in the introduced applica-
tion. Solely the pure dissimilarity values of the bricks can be encoded in
the attribute. An impression of the process can be found in figure 5.5. The
screenshot on top shows the global visualization, which is explained in the
following chapter and is attained directly after the algorithm has concluded.
The image below depicts the generated anomaly attribute, imported into
OpendTect.
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Figure 5.5: Comparison between the results of the algorithm in the proposed application

and the generated anomaly attribute imported into OpendTect [16]
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6 Visualization of the Results

In this chapter the different elements of the visualization as well as the
provided tools for supporting the interpretation are explained. These are
based on the sorted list of ranks, which is created in the last step of the
algorithm.

6.1 Overview of the Application

The algorithm and visualization are integrated into an in-house developed
seismic interpretation software called the VRGeo Demonstrator [11], which
is entirely implemented in C+4++. For the creation of a GUI the QT li-
brary [10] was used, which is based on C++ and supports the creation of
user interfaces. To integrate the rendering of graphical OpenGL context,
the OpenSceneGraph library [43] was integrated, which allows to create
real-time graphics applications. An overview of the application can be seen
in figure 6.1.

Figure 6.1: Overview of the developed application

When launching the software, a SEG-Y dataset can be selected and im-
ported. As all of the available attributes of the dataset are stored in their
own file, the software needs to import all of them one by one. After the
import is completed, a user is presented with the volume view, which shows
a 3D view of the dataset with volume rendering in the center, as it can be
seen in figure 6.1. In accordance to the aims of this thesis, the developed
algorithm should be executed first, to get an overview of different regions
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in the dataset and to be provided with multiple starting points for interpre-
tation. The respective GUI dialog for semi-automatic feature detection can
be opened via the menu bar at the top. A screenshot of the user interface
can be seen in figure 6.2. There the upper part can be used to define the

[ ] Dynamic Semi-Automatic Feature Detection

Classification Attribute A: Amplitude -
Classification Attribute B: —MOME -- -
MNeighborhood type: 26-Neighborhood -
Dissimilarity measure: L1 distance (bin-by-bin) -
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Display Slices: Inline Crossline Timeline
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Global Visualization Num. of Ranks |50 5
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o
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Inline | | - | |
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Timeline | | - | |
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Figure 6.2: User interface of the semi-automatic feature detection

settings for the algorithm, as they are described in chapter 5. The lower
part is disabled until the algorithm is executed and can be used afterwards
to alter the visualization. The first settings for the algorithm are one or two
attributes to use. These are selected with the dropdown-menus at the top.
According to that, 1D or 2D histograms are compared. Then a user can
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select either the 26, horizontal or vertical neighborhood. Additionally a dis-
tance measure can be chosen. The last input is the maximum level of octree
subdivision, which can be set with the respective slider. The octree level
increases the total amount of bricks, while simultaneously decreasing their
size. A higher level of subdivision might lead to the detection of smaller
anomalies, that are not found otherwise. However, the runtime of the al-
gorithm grows exponentially with the level of the octree, which should be
kept in mind. More information on the performance of the algorithm is
given in section 7.1. Optionally the feature detection can be restricted to
a certain part of the dataset. This can be done by using the correspond-
ing spin-boxes. Finally the GUI offers the functionality for importing and
exporting the results, as it is described in section 5.5. After the algorithm
has been executed, the lower part of the GUI is enabled, as it is shown in
figure 6.3. The single elements are explained in the following sections. As

Rank: 2| | =

Display Slices: [Jmline [] Crossline [] Timeline

Global Visualization Num. of Ranks
Auto Transfer Function  Dissimilarity Threshold

Active Ranges:

mine |77 | - [s8 |

Crossiine  [232 | - [247 |

Timeline |65 |- |70 |
Export Results

Figure 6.3: Lower part of the user interface after execution of the algorithm

the application has mainly two objectives, to provide a global overview of
different structures and to propose starting points for the interpretation,
two different types of visualization were implemented. The first one is a
global overview, revealing clusters of important bricks in the dataset. The
second one is specialized on presenting individual bricks as possible starting
points. These two work independently from each other and can also be used
in combination. Both visualizations are explained in the following sections.

6.2 Global Visualization

The aim of the global visualization is to provide a first overview of different
important regions in the dataset. Thus it is presented directly after the al-
gorithm has concluded. The GUI offers a spin box for the number of ranks
(comp. fig. 6.3), which can be used to specify the amount of bricks to be
displayed. These are taken from the top of the ranked list and rendered
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directly into the volume view. Only the borders of the bricks are visible to
allow examining the data within. Depending on the size of the dataset and
the level of subdivision, the ideal amount of displayed bricks may vary and
the number can be adapted in real-time. Generally the amount has to be
big enough in order to identify clusters, but not too high to cause visual
cluttering. The brick color is determined by using a color scheme similar to
a heatmap, which is mapped dynamically to the number of visible bricks.
Those with the highest dissimilarity are always shown in red. A faint yel-
low color is used for the last visible entries of the ranked list. The applied
heatmap is shown in figure 6.5. It can be noticed that the color scheme is
not continuous but consists of four different colors. According to studies on
glyph visualization, this type of color scheme allows a clearer differentiation
of the respective classes [38]. Possibly important regions in the dataset can
easily be identified on the first gaze. An example of the global visualization
can be found in figure 6.4.

Figure 6.4: Global visualization

- highest visible

rank

lowest visible
rank '

Figure 6.5: Heatmap used for the bricks in the global visualization

In order to increase the informational content of the bricks, the direction
towards the region with the biggest dissimilarity is represented by a glyphm,
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added to the center of each brick. The glyph type fitting the context of a
direction best, is an arrow [38]. While the colors of the arrows could in
theory be mapped to an additional property, this could also interfere with
the colors of the bricks and increase the complexity of the visualization sig-
nificantly. Instead the arrow receives the same color as the corresponding
brick to prevent visual cluttering and to simplify the visualization. The
arrow-glyphs can also be seen in figure 6.4.

The proposed workflow is to select a suitable amount of bricks to iden-
tify important clusters in the dataset. These can then be examined one by
one, including the directions of the contained arrows. At any time slice and
volume rendering can be used to inspect the present data values, to get a
grasp of different features in this cluster. This way a user can get a basic
insight into the dataset and the geological processes, that have caused the
structures in this area. In the next step of the interpretation, the focus could
be on the highest ranked bricks individually. The appropriate visualization
is described in the next section.

6.3 Visualization of Individual Ranks

In addition to the global visualization, multiple tools for the inspection of
individual ranks are provided. Note that both visualizations can be used
simultaneously. This can for instance be useful to investigate the surround-
ings of the currently examined brick. The main part of this visualization is
the active rank, which is displayed in the GUI (comp. fig. 6.3). To the right
are arrows, that can be used to cycle through the ranks and set the focus on
a different brick. Thereby the whole visualization is adapted to the current
rank in real-time. The single elements are explained in the next sections.

6.3.1 Rendering of Slices

For each of the three possible dimensions, one slice can be added to the visu-
alization. The slices are inserted in the middle of the active brick. As soon
as the next rank is activated, they are automatically moved to the center of
the next brick. This principle is further elaborated in figure 6.7.

At any given time a user can move the slices dynamically through the dataset
with the Visualization Control Widget, which can be found in figure 6.6.
This widget lists all of the inserted slices at the top. They can be selected
and moved through the volume, by using the slider below. While the auto-
matically added slices are named accordingly, an arbitrary number of slices
can be inserted manually. This is to adapt the visualization to the specific
needs of the interpreter. The slices use the attribute of the algorithm by
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Figure 6.6: Visualization Control Widget

default, but can be adapted dynamically by changing the selected entry in
the Visualization Control Widget.

6.3.2 Volume Rendering and Automatic Transfer Function

The part of the volume dataset inside of the active brick is visualized with
3D volume raycasting. By default, the rendering is restricted to the size
of the brick, but can be enlarged and moved with the according sliders in
the Visualization Control Widget (comp. fig. 6.6). This restricted area of
raycasting is referred to as wolume lens in the context of this thesis, as
only the parts covered by it are rendered. This yields the advantage, that
the performance intensive volume rendering is only executed in the current
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Figure 6.7: Slices of the F3 dataset I') moving automatically to the active brick

region of interest. Similar to the 2D slices, the volume lens is automatically
moved with the adaptation of the active rank. This can can also be seen in
figure 6.7.

6.3.3 Histogram and Transfer Function Visualization

As further background information on the active brick can support the in-
terpretation, an additional window displays the local histogram of the active
region and the transfer function for the volume rendering. Two types of his-
togram view can be distinguished, depending on the number of attributes
used for the algorithm. The following paragraphs differentiate the two vari-
ants.

One-Dimensional Histogram Widget
When only using one attribute for the comparisons of the algorithm, the

histogram view is referred to as the Histogram 1D Widget. An example of
it is shown in figure 6.8. In the center of this window the active brick’s local
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Figure 6.8: Histogram 1D Widget

histogram is displayed. All frequencies are normalized, so that the biggest
value reaches the top. The local histogram is dynamically adapted to the
size and position of the volume lens. When it is being moved or the size is
changed, the local histogram is recalculated in real-time on the GPU, always
using exactly the voxels on the inside. This way a user can observe how the
value distribution in the nearby areas changes, by sliding the lens through
the region.

As described in section 5.3, one normalized dissimilarity value is calculated
for every bin of the histogram, describing how it differs from the bins with
the same index in the neighborhood. These values are displayed on top of
the local histogram in form of a blue curve, which is called the anomaly
curve. It consists of one point for every bin of the histogram. The posi-
tion of the respective points corresponds to the bin dissimilarity and the
bin index. These points are then connected to result in a curve, which can
also be seen in figure 6.8. The aim is to provide additional information on
the dissimilarity of the values to support the interpretation. Through the
maxima of this curve, the values most responsible for the ranking of the
corresponding brick can be easily identified.
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The third element of the Histogram 1D Widget is an automatically gener-
ated transfer function. Mostly a user might want to investigate just those
parts of the active brick, which differ from their surroundings. Hence the
calculated bin dissimilarities can be used to generate a transfer function au-
tomatically, to emphasize the anomalies and to hide other regions. Therefor
the bin dissimilarities have to be normalized to the range of zero and one.
Then a threshold can be defined to specify how dissimilar the displayed bins
have to be. This threshold is set to 0.85 by default, but can be adapted in the
GUI to suit the needs of the interpretation. The transfer function is created
by automatically adding control points to the values above the threshold.
When the threshold is changed by a user, additional points are added or
existing ones are removed. The dissimilarity value additionally serves as an
opacity. Thus only the highest dissimilarity values are fully opaque, while
others appear transparently. Bins below the threshold are not visible in the
volume rendering at all. One example for the automatic transfer function
can be found in figure 6.9, where the algorithm was used on the amplitude
of the Parihaka dataset [42]. The included horizons are isolated automat-
ically, by using the automatic transfer function. Only values belonging to
the horizons are shown in the volume rendering. In addition, the corre-
sponding Histogram 1D Widget can be seen to the right side of the volume.
The local histogram, anomaly curve and automatic transfer function are

Amplitude

Figure 6.9: Automatic isolation of horizons in the Parihaka dataset [42]

adapted whenever the active rank changes. In addition to the automatically
generated transfer function, the widget can be used as a standard editor to
adapt the function to the needs of the interpretation. Existing points can
be adapted or removed and new ones can be added.
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Two-Dimensional Histogram Widget

The 2D version of the widget is similar to the 1D version and contains
the same elements. Here the window is referred to as the Histogram 2D
Widget. An example of it is shown in figure 6.10. The major difference is

[N Crossplot Viewer

simple crossplot | mulfi attribute crossplot
Paint Tools

Max . [] 1

dearal

—IMin

Entropy

Amplitude

® volume lens
select crossplot | Amplitude / Entropy v
O dlobal

Figure 6.10: Histogram 2D Widget

that a two-dimensional histogram is displayed. As shown in section 3.3.2,
integrating the frequencies into the 2D histogram can lead to the loss of
non frequent values. The developed algorithm is specifically aiming towards
finding non frequent anomalies, which might not be visible in a frequency
mapped histogram. Hence it was decided to abandon the representation
of the frequencies. Instead a binary mapping is used, which depicts every
present value-combination. The 2D histogram is adapted, whenever the vol-
ume lens is being moved or its size is changed. Here again the recalculation
of the histogram is performed on the GPU in real-time.

The Histogram 2D Widget also shows the bin dissimilarities, as described
for the 1D version earlier. On the contrary to the one-dimensional case, the
values cannot be represented by a curve due to the two dimensions of the
histogram. Alternatively the colors of the visualization can be used for this
matter. The most intuitive color scheme would again be a heatmap with
red and yellow tones. However, these colors are already in use for the global
visualization of the bricks. The color scheme should not be reused to repre-
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sent the bin dissimilarities in the histogram, as these values have nothing in
common and this might confuse a user. Instead a color mapping from light
to dark blue can be used. Dark blue values represent the bins with highest
dissimilarity and the light blue colors depict values, which have less variance
in the neighborhood. Aside of the histogram, the color table is displayed
for reference. The result of the color mapping can also be seen in figure 6.10.

The Histogram 2D Widget also provides an automatic transfer function
and editor. Due to higher dimensionality the function cannot be generated
with simple control points like in the one-dimensional case. Alternatively
a painting metaphor can be utilized, which was introduced in [31]. The
editor is based on painting and erasing values. Therefor the Histogram 2D
Widget provides a brush with an adaptable size. It can be used to paint
those values, that should be visible in the volume rendering. Furthermore a
rubber tool can be used to remove previously painted values. The paint is
represented by a green overlay color, as it can be seen in figure 6.10.

The method of the automatic transfer function generation is similar to the
one-dimensional version. For every bin dissimilarity above the user-defined
threshold, the corresponding value is painted automatically and is visible in
the volume rendering. The painted spots are adapted, when the active rank
or the threshold is changed. Paint brush and rubber tool are available at
any time, to adapt the transfer function to the specific needs of the situa-
tion. An example for the two-dimensional automatic transfer function can
be found in figure 6.11.
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Figure 6.11: Automatic isolation of a horizon in the F3 dataset [15]
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As it can be seen, the 2D algorithm was used on the combination of the am-
plitude and entropy attributes. The automatic transfer function is able to
isolate a detected saltdome. All values not belonging to it are automatically
hidden in the volume rendering. The corresponding Histogram 2D Widget
can be seen on the right side of the volume. The local histogram, anomaly
color mapping and automatic transfer function are adapted whenever the
active rank changes, similar to the Histogram 1D Widget.
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7 Evaluation

In order to evaluate this new approach, experiments with the algorithm on
synthetically generated data were conducted. Additionally multiple expert
interviews were realized in collaboration with institutions of the oil and gas
industry. These interviews were based on the application of the approach
on real-world data. The performance of the algorithm and the results of the
evaluation are presented in this chapter.

7.1 Implementation and Performance

One of the requirements defined in section 5.1 is to achieve a fast execution
speed of the algorithm. Since the aim is to provide a first overview of differ-
ent regions in the dataset, a long time-exposure would hamper the benefits
of using the algorithm instead of performing a manual analysis. Thus it is vi-
tal to utilize the capabilities of hardware acceleration. Hence the algorithm
was entirely implemented in CUDA. Nearly all steps can be performed in
parallel, as the calculations of the respective bricks do not depend on each
other. The subdivision and subsequent merging of the octree is performed
layer by layer. Thereby all bricks of the respective layer are processed in
parallel. Once the octree is fully generated, the local histograms of the final
bricks are stored in the global GPU memory. Then all of the existing bricks
access the histograms of their neighbors and the total dissimilarity is calcu-
lated for every brick in parallel. Solely the last step of the algorithm, which
is the sorting of bricks to obtain the ones with the biggest dissimilarity, is
performed sequentially on the CPU.

To verify the compliance of the speed requirement, the runtime was mea-
sured under different conditions. The results of the measurements are dis-
played in the column chart in figure 7.1. All measured times were taken
during the execution of the algorithm on the F3 dataset [15] with an exten-
sion of 600 x 950 x 412 and a file size of 420 megabytes (MB) per attribute.
The utilized workstation has the following specifications:

e Intel Xeon CPU E5-2687W 0 @ 3.10 GHz
e 64 GB RAM
e Nvidia Quadro K6000

All measured times and the number of generated bricks are additionally
provided in table 7.1 more detailed. As it can be seen, the algorithm mostly
concludes within a couple of seconds. The only higher values are the ones for
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Octree Level 1 2 3 4 5

1D runtime in seconds 0410506 | 1.3 12.3
2D runtime in seconds 0.8] 18| 23| 5.1 49.2
Number of generated bricks | 8 | 64 | 448 | 3600 | 29359

Table 7.1: Comparison of the 1D /2D algorithm runtime and the number of generated
bricks for different octree levels

the maximum octree depth of 5 levels, which are 12.3 seconds for the one-
dimensional and 49.2 seconds for the two-dimensional case. Since all of the
measured times are below one minute, the requirement of a fast execution
speed can be considered as fulfilled.

Runtime of the Algorithm
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Figure 7.1: Runtime of the algorithm

7.2 Tests with Synthetic Data

The aim of synthetic data is to approximate a real-world situation under
certain testing conditions. In this case the desired anomalies can be arti-
ficially produced at known locations, allowing the detection capabilities of
the algorithm to be evaluated with ground-truth data. The generation of
the data and the results of the experiments with these are described in the
following sections.
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7.2.1 Generation of Synthetic Data

As suggested by experts from Leibniz Institute for Applied Geophysics
(LIAG) [18], the synthetic datasets were generated based on one seismic
trace, which was extracted from a real-world dataset. This way a valid
seismic signal was the foundation of the data, which is important to guar-
antee the validity of the test results. The seismic trace was duplicated and
spread across the whole dimensions of the synthetic dataset. Then a Gaus-
sian noise was added to the amplitude values, to increase the variance of the
data. Finally a random vertical offset was applied to recreate the layering
characteristic of seismic data, which is not totally homogeneous and parallel.
The result of these steps is a synthetic template dataset, that follows the
typical normal distribution of the amplitude. In the next step the anomalies
were added, by modifying the values at certain locations manually.

127

127

i R AR R S R S AR T I | 128" 127
0

Figure 7.2: Synthetically generated tilted horizon (a), faulted horizon (b) and bright
spot (c)

A total of three datasets were created, containing the following anomalies:
(A) One tilted and one straight horizon
(B) One faulted and one straight horizon
(C) Three bright spots
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Figure 7.2 shows slices of the synthetically generated datasets and the con-
tained anomalies. On the right side of the slices the global histograms of the
dataset are shown. As it can be seen, all of the three datasets still follow
the Gaussian distribution of the amplitude. Thus the anomalies cannot be
detected on the global scale.

The synthetic datasets were generated using python and the open-source
library Segpy [34], which supports the import, adaptation and export of
SEG-Y datasets.

7.2.2 Results

In this section the results of the experiments with the synthetic datasets are
presented, differentiated between the three datasets.

(A) - Tilted Horizon

(b)

Figure 7.3: Global visualization of the 26 neighborhood (a) and the horizontal neigh-
borhood (b)
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The first synthetic dataset contains one tilted horizon and one straight hori-
zon. Experiments with the algorithm have shown, that the 26 neighborhood
is only capable of detecting the straight horizon, while the tilted one is not
found. A screenshot of the global visualization can be found in (a) of figure
7.3. The detection of the tilted horizon is not possible with this neighbor-
hood, as the anomalous values are also present in many nearby bricks.

As opposed to this, the values of the upper horizon vary in all vertical
and diagonal directions. Equal results are obtained when using the vertical
neighborhood. Just the horizontal neighborhood is able to detect the tilted
horizon, due to the obvious value change in this direction. However, the
upper horizon is not found anymore. A screenshot of the detection of the
tilted horizon can be found in (b) of figure 7.3.

(B) - Faulted Horizon

The second synthetic dataset contains one straight horizon and one horizon
interrupted by a fault. The 26 neighborhood and the vertical neighborhood
are able to detect both horizons, due to the change of the value distribution
in the corresponding directions. But the faulted region itself is only de-
tected by the horizontal neighborhood. This is due to the strong difference
of the values at the fault plane. However, the other parts of the horizons
are merely detected, since the value distribution is equal in the horizontal
direction. The global visualization of the detected fault can be found in
(a) of figure 7.4. The screenshot in (b) shows the corresponding glyph vi-
sualization. It can be seen, that the arrows point into the direction of the
fault plane and thus towards each other. This is a good example of how the
arrows can indicate the presence of anomalous structures.

(a) (b)

Figure 7.4: Global visualization of the detected fault in the horizon
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(C) - Three Bright Spots

The last synthetic dataset used for the experiments contains three bright
spots. Two of the three are detected by all of the neighborhoods. One of
these can be seen in figure 7.5. Note that only the brick in the center was
rated with a high rank, while the other two bricks were displayed in black
manually for the sake of the illustration. The local histograms of the three
bricks can be found below. One can easily see, that the histogram in the
center differs clearly from both neighboring histograms. It contains negative
amplitude values represented by yellow and red color. These are caused by
the bright spot and are not present in the other two histograms. Hence the
dissimilarity measures are able to recognize the brick as an anomaly, when
comparing it to the neighbors.
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Figure 7.5: Detected bright spot and local histograms of the three bricks

While the second detected bright spot is similar to the one presented, a
different case has occurred regarding the third bright spot in the dataset. It
is positioned directly on the edges of four adjacent bricks. Thus the amount
of anomalous voxels distributes into four local histograms, instead of one.
Hence when comparing one of the bricks to the bricks in the neighborhood,
the values are present in both histograms. This leads to the bright spot
not appearing to be an anomaly on this local scale. A screenshot of the
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situation can be found in figure 7.6. Here again the bricks were displayed in
black manually, to provide a better understanding of the issue. The unfa-
vorable position of the bright spot can be seen on top. Below are again the
local histograms of the three bricks of the upper row. Here, especially in
contrast to figure 7.5, the local histograms are merely distinguishable. The
histogram in the center only contains a couple of anomalous values in the
positive amplitude range. Yet the values can also be found in the left his-
togram. They are not present in the right histogram, as the brick does not
contain parts of the bright spot. The distribution of the anomalous values
into multiple bricks reduces their total frequency and thus the detectability
in the histogram. Some ways of solving this issue were developed during the
expert interviews and are given in the next section.

-
[
8 0 127 -128 0 127

-128 0 127 -12

Figure 7.6: Bright spot split into multiple bricks and local histograms of the top row

In addition to the presented experiments, different dissimilarity measures
were tested on the various neighborhoods. These tests have revealed, that
the type of dissimilarity measure has almost no impact on the results. Just
some of the bricks are ranked on a slightly different spot. The overall results
however are very similar. The reason for that might be, that only basic dis-
similarity measures were used for the first experiments. There is a chance
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that more proficient dissimilarity measures, such as the Earth-Movers Dis-
tance [39], yield different results. This topic might be an interesting direction
for further research.

7.3 Expert-Interviews

In addition to the experiments with synthetic data, multiple expert inter-
views were conducted with members of the VRGeo Consortium [11] and
further institutions from the oil and gas industry. These kind of interviews
are a frequently used technique in qualitative research and provide an in-
sight into the thoughts of domain experts, allowing to benefit from their
experience. As opposed to this, a quantitative evaluation cannot provide
this kind of information [20]. The developed algorithm is a new approach
and a qualitative study is more useful when little is known, to get a first idea
of the benefits [6]. Thus a qualitative interview was chosen to gather infor-
mation on the strengths of the developed algorithm and to find elements for
further improvement.

The interview was structured in a flexible way to improve the quality of
the resulting data. On one hand, the conversation had to be guided by de-
fined questions. On the other hand, it had to be dynamically adaptable to
allow the experts to develop their own ideas on how the algorithm could be
beneficial. Thus the method of a semi-structured interview was utilized, as
it combines specific questions with an open discussion [20].

A topic guide, which is often used in these kind of interviews, was pre-
pared. It consists of a list of key questions, which were to be covered.
Additionally it could be extended with different prompts during the respec-
tive interviews, encouraging the participant to talk about various ideas and
specific issues [6]. This guide can be found in the appendix of this thesis.
Note that the same topic guide was used among all participants. Only the
utilized datasets were exchanged between the respective interviews.

The aim was to determine the benefits of the algorithm and the presented
visualization. However, the usability and user experience of the software
were not part of the evaluation. Thus the interviews were conducted by a
single interviewer, who also controlled the software and lead the discussion.
Although statistical representativeness is not part of qualitative research
implicitly [6], the sample was taken in a systematic way to ensure that
multiple perspectives have an influence on the results. Hence the selected
participants work in diverse geological fields. Furthermore experts with a
background in research, as well as employees of industrial companies were
involved. A total of 12 experts were interviewed. Half of these work for in-
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dustrial companies and institutes like ExxonMobil [12] and DMT [19]. The
other half are involved in research facilities, like the department for geo-
physics of the University of Cologne [35], the Earthquake Station in Bens-
berg [46], the Leibniz-Institute for Applied Geophysics (LIAG) [18] and the
RWTH Aachen [1]. The interviews took around 60 minutes each. Two
different datasets, which are the freely-available Parihaka [42] and F3 [15]
volumes, were used in the interviews. Each participant was given one of
these datasets, so that both were used equally often. This way the results
were not biased by the characteristics of one dataset.

7.3.1 Procedure

In the first step of the procedure, introductory slides were shown to each
participant. These did contain the basic idea and theory of the algorithm,
as well as an explanation of the different elements of the visualization. Fur-
thermore the procedure of the live demo was presented. Finally the slides
included additional information on the utilized dataset, for instance the di-
mensions and geographical location, as this knowledge is of importance for
the analysis.

After the short introduction, the live demo of the software was conducted.
The results of the algorithm were prepared and exported in advance, as de-
scribed in section 5.5. This way the repetitive execution of the algorithm
was avoided. The results were imported one after another and shown to the
participant. A total of five results were used. Among these were different
neighborhood types and attributes to compare their performance. As the
experiments with the synthetic datasets have shown, the dissimilarity mea-
sures do not influence the results considerably. Therefore the measures were
not part of the interviews. Instead all of the different results were generated
using the Li-distance (comp. eq. (4.1)). During the live demo, the focus
was on the elements of the visualization. At first, the global visualization
was inspected in order to detect clusters of important bricks. The experts
were asked to validate, whether the corresponding regions are of importance
for the interpretation. Secondly, the experts focused on the top ranks and
examined the corresponding regions for interesting structures individually.
Lastly, the local histogram with the anomaly curve, the direction of the
arrow-glyphs and the visible structures in the volume rendering had to be
evaluated.

The last step of the interview were a couple of general questions that fo-
cused on the benefits of the approach and the integration into the day-to-
day workflow of an interpreter.
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The aim of the expert interviews was to find answers to four main ques-
tions:

1. Can the algorithm be used to receive a global overview of different
structures?

2. Does the algorithm detect interesting anomalies and rank these ac-
cordingly?

3. How can the algorithm be integrated into the seismic interpretation
workflow?

4. Which fields of the seismic interpretation can be supported with the
help of the algorithm?

The results of this evaluation are presented in the following section.

7.3.2 Results

The interviews have provided valuable insights and the received feedback
was very positive. In general the approach was rated to be very promising.
The experts approved that using histograms for detection of anomalies is
a novel idea and was priorly not used in the context of volume data. A
comprehension of the results, enriched with examples of the structures de-
tected during the interviews, is given in this section. Therefor the four main
questions of the evaluation are used as a framework.

1. Global overview of different structures

The first aim of the expert interviews was to determine, if some regions
and structures can be identified by only investigating the colored bricks in
the global visualization and their clustering. The experts were able to as-
sume the presence of different structures and important regions directly.

The spatial brick arrangement corresponds to the shape of the underlying
structures. One example therefor is the horizon that can be seen in (a) of
figure 7.7. The horizon moves downwards to the left, which is represented
in the positioning of the bricks. It was detected in the F3 dataset with the
26 neighborhood and the brick with the rank number 1 was contained in the
center. Using the vertical neighborhood, the horizon was detected equally
successful. Only the horizontal neighborhood was not able to find it, as the
value distribution does not change in that direction. With the help of the
automatic transfer function, the detected horizon could be isolated entirely
in the volume rendering, as shown in (b) of figure 7.7.

66



Chapter 7 | Evaluation

Amplitude
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Figure 7.7: Horizon detected by the algorithm (a) and volume rendering with automatic
transfer function (b)

The experts also found the 2D comparison, which detects anomalies in a
combination of two attributes, to be very important. When features can be
found in multiple attributes particularly well, this also increases the chances
of detecting them as an anomaly. Further there are attributes, which are
specifically designed for highlighting certain features. These attributes can
be used in combination to detect exactly these features with the algorithm.
For instance the dip attributes can be used to find unconformities and the
similarity attributes can be used to detect faults [29]. One example therefor
is given in figure 7.8, where two faults were found in the Parihaka dataset
with the combination of the amplitude and similarity attributes and the
horizontal neighborhood. These faults cannot be detected, when using only

67



Chapter 7 | Evaluation

one of the given attributes. Here again the global visualization allows to
identify the structure directly, as it can be seen in (a). The clustering of the
bricks corresponds to the location of the respective fault planes. In (b) the
isolation of the structures with the automatic transfer function is shown.
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Figure 7.8: Detected fault in the Parihaka dataset (a) and isolation of the structure with
the automatic transfer function (b)

An even further increase of the number of possible attributes was desired by
the experts. The principle of the algorithm can also be applied to histograms
with a higher dimension. Yet one needs to keep in mind, that every further
dimension increases the required memory and the runtime of the algorithm
significantly. Another promising suggestion by one of the experts was to
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use a different type of global visualization. The information of the arrow-
glyphs could be used to create isolines between the bricks. Then the bricks
could be removed and the isolines would mark the border between different
structures. Therefor an algorithm would have to be developed, that chooses
the optimal path of the lines between the bricks depending on the direction
of the arrows. This would most likely be the path, on which the arrows of
the adjacent bricks point towards each other, indicating a change of region
between them.

2. Detection of interesting anomalies

In addition to the impressions of the global visualization, the top ranks were
investigated individually during the interviews. All of the experts agreed on
the algorithm detecting very promising regions on the top ranks, which
would be of interest for the seismic interpretation. Consequently the algo-
rithm gives further advice for the decision-making during the analysis of a
new dataset.

At first, the experts found the algorithm to detect strong reflections very
well. These can for instance be small bright spots. An example of a bright
spot detected by the algorithm, can be found in figure 7.9. In (a) the bright
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Figure 7.9: Bright spot detected by the algorithm in the F3 dataset

spot with the corresponding brick is shown. The automatic transfer function
was able to isolate the spot in the volume rendering, as it can be seen in (b).
The anomaly was ranked fourth and found on an inline slice by using the
horizontal neighborhood. In figure 7.10 the histogram of the brick with the
bright spot and the histogram of the region directly to the left of it can be
seen displayed in gray. One can easily see, that the local histogram of the
bright spot in (a) looks very different to the one in (b). It has additional
peaks in the smaller positive and negative ranges, which are not present in
the other one. These amplitude ranges were also rated to be the ones that
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Amplitude Amplitude

(a) (b)

Figure 7.10: Local histogram of a brick including a bright spot (a) and local histogram
of a neighboring brick without anomaly (b)

are dissimilar to the neighborhood, as it can be seen through the peaks of
the blue anomaly curve. As opposed to this, the histogram in (b) follows
the typical Gaussian distribution of the amplitude values. Furthermore the
peak of the anomaly curve in (b) is also around zero, as these amplitudes are
not present in the anomalous brick. The region to the left of the detected
brick was solely chosen as an example. Other adjacent bricks have similar
histograms through an equal value distribution, as it can be seen on the slice
in figure 7.9.

But the detection of strong reflections is not the only advantage of the
algorithm. Changes in the layering of the dataset are also detectable. One
example therefor is the peak of an anticlinal structure, found on an inline
slice of the F3 dataset by using the 26 neighborhood. The corresponding
brick was rated on rank 10 and can be seen in figure 7.11. While the hor-
izontal neighborhood did also find the structure but ranked it differently,
the vertical neighborhood was not able to detect it. This might be due to
the fact, that the 26 neighborhood includes a huge portion of the Gaussian
distributed bricks of the neighborhood into the comparison, to which the
anomalous part is very different. This amount is smaller for the horizontal
direction, leading to a lower rank. As the F3 dataset is part of the training
of the open-source software opendTect [16], well-data is freely available and
can be used to draw conclusions on the material in the seismic. These wells
are drilled paths into the earth. They come with a well log, that contains
measurements of physical quantities in or around the well [29]. One of these
wells runs directly through the detected brick of the anticlinal structure.
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Figure 7.11: Detected anticlinal structure in the F3 dataset

When overlaying the slice with the well log, the region of the detected brick
is covered with a local gamma ray maximum. This is visualized with a
brown color in (a) of figure 7.12. In (b) the corresponding well log is dis-
played. The high gamma ray indicates the presence of oil and gas in that
area, as it was noted by the experts. Above the detected brick is a so-called
gas chimney structure, which is a subsurface leakage of gas from a poorly
sealed hydrocarbon accumulation [29]. This shows that the region detected
by the algorithm is promising for further interpretation.

Another example for structural anomalies are folded horizons, which are
found to some extend. The amount of folding can lead to the horizon being
located on the border of bricks. Thus the detection of the whole horizon
might not be possible in these parts. A folded horizon for which that is the
case can be found in (a) of figure 7.13. The horizon is detected on a crossline
slice of the F3 dataset with the vertical neighborhood. As it can be seen,
the left part of it was sorted into higher ranks without issues, as the horizon
is only present in the upper bricks. The bricks below are also rated higher,
since the vertical neighborhood determined that these bricks differ locally
from the bricks above. A bit of the right side was also detected, as it is only
present in the lowest brick. However, the whole part in the middle was not
discovered, since it runs along between the bricks and influences the value
distribution of both histograms. The difference between the histograms is
not significant enough, to be detected by the algorithm. In this situation
the automatic transfer function is very useful. Although the middle part
of the horizon was not detected directly, the anomalous values are present

71



Chapter 7 | Evaluation

=
=
-
-
]
-
-
-

Gamma Ray
Gamma Ray:1e30AP| Gamma Ray:1e3(

(a) (b)

Figure 7.12: Overlay of well on detected anticlinal structure (a) and corresponding well
log (b)

and equal to the rest of the horizon. Therefore when extending the volume
lens across the area, the whole horizon appears in the volume rendering, as
it can be seen in (b) of 7.13. This feature was rated to be very convenient
by the experts. In addition to displaying not detected parts of one single
structure, the same principle can be used to find similar structures in other
parts of the volume, that can also be isolated with the same transfer function.

As it could be seen in the previous examples, the detectable feature-types
depend heavily on the utilized neighborhood. In general, the horizontal
neighborhood is not suitable for structures, which spread in the same direc-
tion. This is due to the fact, that the data values do not change much there.
For example horizons are more likely to be found, when using the vertical
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Figure 7.13: Folded horizon not detected entirely (a) and isolation of the complete struc-
ture with the automatic transfer function (b)

neighborhood. Similarly the horizontal neighborhood is more adequate for
features like faults, which cause a change of values in the horizontal direc-
tion. The 26 neighborhood appears to be an allrounder. It is able to detect
most feature types, if the corresponding structure is positioned accordingly.
Yet it has a bigger chance of missing certain features, which only spread in
one of the 26 directions. In that case the more specialized neighborhoods
perform better. Thus the 26 neighborhood is suited best for a first overview
of important structures, while the other neighborhood types provide more
value, when targeting specific structures.

Another important requirement for the algorithm was to be unaffected by
artifacts. One of these artifacts is a so-called multiple, which is seismic en-
ergy that was reflected several times and appears as an additional event [29].
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The expert interviews have shown, that the algorithm is not misguided by
these. This might be the case, since they do not affect the value distribution
of the histogram by a noticeable amount.

Some improvements for the visualization were suggested by the experts.
It should be possible to show the bricks and histograms directly adjacent to
the one in focus for reference, even if they are not rated to be anomalous.
The experts were particularly interested in the neighboring regions. This
was especially important in cases, in which only one brick was detected to
contain anomalies, while the whole neighborhood did not seem to deviate
from the normal distribution. The knowledge of the ranks of the surround-
ing bricks, and precisely to find out why these were graded differently, could
improve the understanding of the results. Thus it should be possible to
show the bricks temporarily. An additional window could then display all of
the histograms in the neighborhood, allowing a user to compare them. One
further improvement could be the combination of particular results of the
algorithm. This could happen either by using a logical operator on multiple
results, or by combining the results visually with a special kind of visualiza-
tion.

As the experiments with synthetic data and the results of the expert in-
terviews have shown, occasionally features are not detected when they are
situated on the border of the bricks. Further subdivision cannot be used to
cope with this issue, since the borders of the bricks remain in place. Two dif-
ferent solutions can be considered to solve this issue. The first one would be
to allow an overlap of the bricks, so that the features located on the border
are then present in both and might be detected this way. The octree data
structure would have to be adapted accordingly, because it only supports
non-overlapping, space-filling regions by nature. Another solution would be
to implement a sliding detector, which has a certain size and moves through
the dataset voxel by voxel. For every step, a full comparison between the
current local histogram and the ones in the neighborhood would have to be
performed. This way the exact step, in which the sliding brick covers the
anomaly perfectly, would result in the highest dissimilarity. Yet this exten-
sion would increase the runtime of the algorithm significantly.

3. Integration into the seismic interpretation workflow

Besides the results of the algorithm, the question on how it can be inte-
grated into the seismic interpretation workflow was of major importance.
As it was shown, the algorithm can be executed in a short period of time
and the global visualization provides valuable information on the importance
of different regions in the data. The experts were directly able to assume
the presence of certain structural features, just from looking at the global
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visualization. Additionally the highest ranked bricks do contain important
structures, which are suitable as starting points for a first analysis. The
arrow-glyphs inside of the bricks were very useful for identifying the origin
of the biggest change in the data distribution. Furthermore the automatic
transfer function was able to isolate the target structure in nearly all of the
cases and can be used to detect similar structures in other regions of the
dataset. Thus the algorithm is especially useful when starting the interpre-
tation of a new, unknown dataset.

The idea of generating an anomaly attribute from the results of the al-
gorithm was appreciated by the experts. It allows the seamless integration
of the algorithm into their workflow. The experts stated that they typically
use a handful of different software packages depending on the current task.
By creating a SEG-Y anomaly attribute, the results of the algorithm can be
imported and used in different software packages fluently.

4. Fields of application

One objective of the algorithm was to provide a first overview of impor-
tant structures in a new dataset, which is already fulfilled. Beyond that, the
expert interviews were used to ascertain, if additional tasks of the seismic
interpretation can benefit from the results of the algorithm. The experts
determined, that the algorithm could provide value to two different fields of
application.

At first, it could be used to detect and extract big structures like saltdomes
or horizons. This would help to prevent the tedious manual extraction on a
per-voxel basis, which is typically done today. One requirement would be,
that the features are detected entirely and definite, which is currently not
always the case. Yet the combination of the ranked bricks and the automatic
transfer function can be used to extract the structures completely.

The other possible field of application is the detection of direct hydrocar-
bon indicators (DHIs). These bright spots are small regions with a high
amplitude value. They indicate the presence of oil and gas, as explained
in section 2.4.2. Thus the localization of these would support the search
for hydrocarbons. As it can be seen in the example of figure 7.9 and the
experiments with synthetic data in section 7.2.2, the DHIs can be detected
by the algorithm, depending on their size and position. Since these spots
are typically very small, the number of subdivisions in the octree was some-
times not adequate, so that the DHIs did not occupy enough space in the
brick to affect the local histogram sufficiently. The maximum level of octree
depth would have to be higher, which leads to bricks of a smaller size. Then
the DHIs could be detected more reliably. However, this would have the
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side-effect of increasing the runtime of the algorithm exponentially. Besides
the bright spots being too small for the current size of the bricks, they can
also be located directly on the border of them, as the experiments with syn-
thetic datasets have shown. The same situation was described in case of the
horizons before and the solutions of using an overlap or a sliding detector
could also solve this issue for the detection of the bright spots.

Finally the experts suggested to apply the algorithm on data from different
domains, such as ground-penetrating radar or meteorological data. This
could help to get a better understanding of how the algorithm works and
how it can be improved.

Summary

In summary the expert interviews have revealed, that the algorithm is capa-
ble of detecting important anomalies in the dataset. At first the algorithm
can be executed very fast as presented in section 7.1, which makes it appli-
cable during an initial screening of an unknown dataset. Additionally it was
shown, that the detected results are feature-independent, allowing the ap-
plication in a multitude of possible scenarios. Furthermore the results of the
algorithm are reproducible, since the histograms and dissimilarity measures
are always calculated identically. Thus almost all of the defined require-
ments of section 5.1 are satisfied. Solely the reliable detection of features
in their entirety cannot always be guaranteed yet. However the proposed
improvements are very promising to resolve these limitations.




8  Conclusion and Outlook

In this thesis, an algorithm was developed for the detection of anomalous
regions in a seismic volume dataset. The basis for the algorithm is the com-
parison of local histograms in a neighborhood, to detect the diverging parts.
A software was developed, which implements the algorithm and visualizes
the results. Furthermore it offers multiple tools to support the interpreta-
tion of the data. The algorithm was evaluated in multiple ways. At first,
experiments with different synthetic datasets were performed. Further an
expert-interview was conducted, in which the software was applied on real-
world seismic datasets. The evaluation has shown, that the detection of
interesting regions is possible, independently from the contained feature-
type. The fast execution time of the algorithm makes it an appropriate
candidate for an initial analysis.

As the approach is a proof of concept, the integration into the seismic work-
flow is not clarified yet. In addition to the pure detection of anomalous
regions, it could be useful in two particular tasks of the interpretation.

At first, the extraction of structural features like salt domes or horizons
could be performed automatically, which could save the time of extracting
the structures manually. However, the algorithm does not always detect
these features entirely. This is due to the possibility of a structure being
situated on the border of two bricks. The issue can probably be solved,
by allowing the bricks to overlap or alternatively by using a sliding brick
detector, which moves forward voxel by voxel and does a full neighborhood
comparison at every step. These improvements could ensure the full detec-
tion of those structures.

The other possible field of application is the detection of direct hydrocar-
bon indicators (DHI). As these spots typically consist of merely a couple
of voxels, the subdivision of the octree is too coarse, to identify all of the
spots reliably. If the octree would be subdivided further, these DHIs could
be detected at a higher probability. Contingently the proposed features of
overlapping bricks or the sliding brick operator can also facilitate the detec-
tion of these.

Until now only some basic distance measures and a selection of neighborhood
types were tested. Moreover only a small amount of attributes and combi-
nations of these were used. Since the number of possible input parameters
is enormous, an extensive long-term study on different distance measures,
neighborhoods and attributes could provide additional ideas on how to im-
prove the algorithm further. This study should be performed together with
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seismic interpreters, who integrate the developed application into their daily
workflow.

Another interesting idea might be, to combine the algorithm with other
methods of automatically interpreting data. For example deep learning,
which was introduced in section 4.1, could be combined with the results
of the algorithm. Thereby a neural network could be used to give a first
estimation on the feature type contained in the detected anomalous bricks.
This could enhance the informational content of the global visualization. Al-
ternatively the regions detected by the algorithm could be used as training
data for an unsupervised machine-learning approach, similar to the one pre-
sented in [32]. To generate the training data, the parts of the slices within
the highest ranked bricks could be exported to image patches. Then the
machine-learning algorithm could be used to detect natural patterns in the
data and sort the bricks into different classes, which could correspond to
different geological features. This way the content of the detected regions
could directly be classified to support the interpretation even further. The
main benefit would be, that the unsupervised learning does not require la-
beled training data. Instead the training can directly be performed with
the extracted results of the algorithm. Through the pre-selection of relevant
data, the time of the training and required disk space can be reduced and
there is a chance of receiving more meaningful results [24, 30].

In summary the proposed algorithm is promising and has aroused the in-
terest of domain experts. The optimization and further development of the
algorithm according to the feedback received, as well as a detailed evaluation
of the approach are subject to further research.
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IAIS

SEMI-AUTOMATIC FEATURE DETECTION
TROUGH ANOMALIES IN LOCAL HISTOGRAMS

Expert-Interview Topic Guide

DATE:
NAME:
INSTITUTION:

USED DATASET:

PROCEDURE (~60 MIN):

e  Slideshow: Introduction and goals of the project (~15 min)
e Interview on multiple results of the algorithm with different settings
(each ~5 minutes = 25 minutes)

@)
O

@)
@)

Amplitude, 26-Neighborhood

Amplitude, Horizontal Neighborhood
Amplitude, Vertical Neighborhood

Amplitude + Dip (2D) , 26- Neighborhood
Amplitude + Similarity (2D) , 26- Neighborhood

e  Discussion and further questions (~15 min)

GUIDING QUESTIONS:

e Askthe following questions for every of the five result files:

o

How does the global visualization support the detection of structures / patterns?

Which interesting features are found in the top ranks (e.g. Channel, Fault, Saltdome, ...) ?
Does the direction of the arrows in the global visualization provide useful information?
Which additional information does the visualization of the anomalies provide?

Does the automatic transfer function help to isolate important structures?

e  General questions for the final discussion:

o

o

o

Are there important structures in the dataset, which have not been detected by the algorithm?
How can the algorithm be used in the seismic interpretation workflow?

Which tasks could benefit from the algorithm?



