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Abstract
The introduction of gestures as a supplementary input modality has become of increasing
interest to human computer interaction design, especially for 3D computer environments.
This thesis describes the concepts and development of a gesture recognition system based
on the machine learning technique of Hidden Markov Models. Well-known from the field of
speech recognition, this statistical method is employed in this thesis to represent and recog-
nize predefined gestures. Within this work, gestures are defined as symbols, such as simple
geometric shapes or Roman letters. They are extracted from a stream of three-dimensional
optical tracking data which is resampled, reduced to 2D and quantized to be used as input
to discrete Hidden Markov Models. A set of prerecorded training data is used to learn the
parameters of the models and recognition is achieved by evaluating the trained models. The
devised system was used to augment an existing virtual reality prototype application which
serves as a demonstration and development platform for the VRGeo consortium. The con-
sortium’s goal is to investigate and utilize the benefits of virtual reality technology for the
oil and gas industry. An isolated test of the system with seven gestures showed accuracies
of up to 98.57% and the review from experts in the fields of virtual reality and geophysics
was predominantly positive.

Zusammenfassung
Gesten als ergänzende Eingabemodalität haben mittlerweile einen hohen Stellenwert bei der
Entwicklung von Mensch-Computer-Interaktion, vor allem für 3D Computerumgebungen.
Diese Arbeit beschreibt die Konzepte und Entwicklung eines Systems zur Gestenerkennung,
das auf Hidden Markov Modellen basiert. Dieses statistische Verfahren ist in der Spracher-
kennung sehr verbreitet und wird in dieser Arbeit für die Repräsentation und Erkennung von
vordefinierten Gesten eingesetzt. Dabei werden Gesten als Symbole definiert, z.B. als einfa-
che geometrische Formen oder Buchstaben. Diese werden aus drei-dimensionalen Daten eines
optischen Trackingsystems extrahiert und dienen, nach einer Quantisierung, als Eingabe für
diskrete Hidden Markov Modelle. Während die Parameter der Modelle von aufgenommenen
Trainingsdaten erlernt werden, wird die Erkennung von Gesten durch die Auswertung der
trainierten Modelle erreicht. Mit dem entwickelten System wurde eine bestehende Virtual
Reality Anwendung erweitert, die dem VRGeo Konsortium als Demonstrations- und Ent-
wicklungsplattform dient. Ein Ziel des Konsortiums ist es, die Nutzbarkeit der Virtuellen
Realität für die Öl- und Gasindustrie zu erforschen. In einem isolierten Test des Systems
mit sieben Gesten wurden Erkennungsraten von bis zu 98.57% erreicht. Gleichzeitig fiel
auch die Begutachtung durch Experten aus den Bereichen Virtuelle Realität und Geophysik
überwiegend positiv aus.
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1 Introduction

Software usually offers a variety of functionality to a user via graphical menus. An
expert regularly using such software wishes to minimize efforts of executing these
functions in order to create a more efficient and fluent workflow [55, p. 68]. In
desktop environments it is a common and widely accepted solution to use shortcuts,
e.g. specific key combinations, to create a direct call to frequently used functions,
superseding time-consuming navigation through menu structures. When designing
interfaces for virtual environments (VEs), it is often impossible to use conventional
input devices such as mouse and keyboard. This makes it much more difficult to
introduce concepts that maximize workflow efficiencies.

Another important aspect in VEs is to create a natural user interface, meaning
that a user communicates with a system in a way as similar as possible to interaction
in real life. The most natural interface would allow a user to utilize the entire body
as well as multimodal interaction in a three-dimensional environment without using
any additional devices. Due to technical difficulties, imprecisions and other factors,
this goal still remains far from being realized.

1.1 Motivation

Virtual reality (VR) applications are almost exclusively designed for a certain area of
work. Functionality is usually restricted and in most cases a user is an expert in the
particular field of interest. Input devices are usually highly dependent on the type of
application. However, just as in the case of desktop applications, a user will want to
avoid navigation through menu structures if it slows down the progress.

The work presented in this thesis was conducted in the context of the VRGeo1

project at the Fraunhofer Institute for Intelligent Analysis and Information Systems
IAIS . The intention of the project is to support the VRGeo Consortium. Members of
the consortium represent companies from the oil and gas industry as well as their soft-
ware and hardware suppliers. The consortium meets twice a year to discuss the value
of virtual reality technology to applications for the geosciences. Part of the project
is to develop a software prototype, the VRGeo Demonstrator. This VR application
enables a user to visualize and explore seismic data in virtual environments. [31]

One research topic of the consortium was to include gesture control to the inter-
action methods used so far, to enhance the existing VRGeo Demonstrator. With the
new feature it should be possible to access frequently used functions more quickly.

1VRGeo: Virtual Reality research for the Geosciences
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1 Introduction

The request to employ gesture control as a supplement to other existing input modal-
ities is not without reason. This concept was successfully integrated in many other
application areas in VR. Examples can be found in [11, pp. 270–273]. Gestures are a
very natural form of interaction and communication to people. We use it in everyday
life, for example for co-articulation in speech, to interact with the environment or to
signal emotions, certain expressions or intentions. Hence, gestures have become of in-
creasing interest in the field of human computer interaction (HCI) design since its goal
is to make HCIs more natural and intuitive. Additionally, natural interfaces increase
the sense of presence which is one of the main goals of virtual environment design.
The sense of presence is the user’s feeling of really being in the virtual environment
as opposed to the actual location. Therefore, gestures could be a general solution to
achieve task efficiency and improve the sense of presence. [14, 60, 67]

1.2 Goals

This thesis traces the development of a gesture recognition back-end that was to be
included in the existing virtual reality application prototype of the VRGeo project.
The design of the recognition system was based on the experiences and requirements
gathered during previous attempts of introducing gesture control to the prototype.
Furthermore, it was important to use existing data and input devices for the purpose of
recognition and control to avoid the introduction of additional devices or constraints.

With the present setup, gesture input could have been introduced to the men-
tioned virtual environment prototype for several possible scenarios. Application con-
trol such as object manipulation or mode changes, device management and navigation
are common scenarios for gesture control that would have been plausible. The focus of
this thesis lies on gesturing and recognizing predefined symbols to manipulate objects
within the prototype.

For this purpose the statistical concept of Hidden Markov Models is deployed.
Well-known from speech recognition applications, they have gained a strong foothold
in the field of gesture recognition as well. Many publications on gesture recognition
systems like [42, 58, 57, 63, 66, 89, 91] make use of this powerful method achieving
high recognition rates.

The purpose of this thesis is to provide the theoretical background on Hidden
Markov Models and a proof of concept: The result should be a functional module
integrated into the VR prototype of the VRGeo project. It should recognize a set of
predefined symbolic gestures which can be mapped to certain tasks. The identification
of the most frequently performed tasks and the selection of corresponding gestures
is made rather intuitively, because the important goal is to have a working system.
Sophisticated tools such as user studies are not employed.

The positive response at the VRGeo Consortium meeting in June 2008 deter-
mined that the concept would be kept as part of the prototype. Keeping the gesture
recognition system allows further development based on the given feedback. There-
fore, it was important to build a system that would be easily extendable to ensure

2



1.3 Structure

successive research. Another difficulty was the presentation of the system. The rep-
resentatives of the consortium should be able to test the system themselves. Thus,
the system had to be user-independent.

1.3 Structure

Chapter 2 will present the research related to this thesis. This will show the origin
of most of the ideas and concepts used for the work described here. It also contains
some approaches which could be interesting for future work.

In Chapters 3 and 4 the basics of virtual environments and Hidden Markov Models
are discussed to provide a context for the following chapters. Chapter 3 also includes
a presentation of common input and output devices for virtual environments. Chapter
4 will deal with the theoretical foundations of Hidden Markov Models. After giving
a definition the three fundamental problems of evaluation, decoding and training are
examined before mentioning some computational issues.

Chapter 5 demonstrates how the ideas and theories described in the previous
chapters are put into practice. At the beginning of the chapter, the VRGeo Demon-
strator is introduced since it is the application the recognition system was tested in.
Considerations, difficulties and the individual processing steps are explained in detail
starting with an examination of the choice of utilized computational libraries followed
by the basic concepts of the AVANGOR©NG framework [47] which was used for the
implementation. A section on preprocessing gives insight into how collected data is
prepared for the Hidden Markov Models. The end of this chapter will present details
on the choices made for creating the Hidden Markov Models used for training and
recognition.

Chapter 6 illustrates the training process and experimental results of the devised
system. Especially the impact of the definitions from Chapter 5 are discussed based
on the obtained results.

Chapter 7 summarizes the concepts developed and implemented in this thesis,
discusses whether the goals of this thesis were achieved and introduces ideas for future
work.

3
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2 Related Work

As mentioned before, gestures are a natural supplement to human communication and
interaction. Hence, many attempts have been made to utilize gesture control in general
or specifically for virtual environments. Those trials include vision-based approaches
[58, 78, 83, 89] or specific device input [42, 63, 91] to collect either two- or three-
dimensional data which is analyzed using template-matching [53], dictionary look-up
[76], statistical matching [72], neural networks [28] and others. Suggested applications
span from human/robot interfaces [50] to weather narration [68] to musical score
editing [13]. Presenting all of the important contributions is far beyond the scope of
this thesis. Instead of giving a broad overview of the work performed in this field,
this chapter will concentrate on a few selected publications and systems which relate
closely to the project presented within this work.

2.1 Symbol Recognition

Depending on point of view and context, gestures can be defined very differently. For
simplicity the work presented in this thesis concentrates on the recognition of gestures
imitating certain symbols or characters. Obviously, this issue is closely related to op-
tical character recognition (OCR) in general. Research in the field of OCR dates back
to first experiments by Gustav Tauscheck in 1929 [61], though the goal of enabling
machines to read characters or numerals was not accomplished until the 1950’s. Since
the history of OCR research is relatively old, there have been numerous methods, ex-
periments, publications and implementations. One of them is the well-known Graffiti
software by Palm, Inc. deployed in PDAs. The advantage of this software was that
it avoided the biggest problems that other handwriting recognition system have by
taking a much simpler approach. Instead of trying to recognize whole words or sen-
tences, input was restricted to one symbol at a time. This made the system faster and
similar to keyboard input which people were used to. However, more important for
its success was the introduction of a new alphabet based on single strokes. A similar
idea was presented by David Goldberg [33] who also designed an unistroke alphabet
before the development of Graffiti. Although the idea was not new, the alphabet used
for Graffiti was designed to closely resemble Roman letters which helped users get
accustomed to this technique rather quickly. As for the recognition process, the idea
of unistrokes and different input modes helped to minimize classification errors when
dealing with individual and sloppy handwriting. [8, 54]

Elliman and Connor [26] extended the OCR idea to feature a sort of learning
algorithm. The goal was to recognize a symbol regardless of its font, orientation

5



2 Related Work

Figure 2.1: Graffiti (top) and Unistroke (bottom) alphabets. (Illustration from [16])

and size. They encoded the outline of a symbol as a sequence of discrete tokens.
This is done because discrete Hidden Markov Models are used for the learning and
recognition steps. After extracting the outline of a symbol, the centroid is calculated
and is set as the origin. Further the symbol is scaled so that the outline is of a certain
standard length. To obtain the token sequence, a bounding sphere is put around the
current symbol which is divided into four quarters. Starting at the point of the symbol
furthest from the centroid, a tangent direction at each equidistant point on the outline
is calculated in clockwise order. With the help of the quartered circle and a look-up
table (LUT), the tokens are derived as shown in Figure 2.2. Using 16 symbols with 3
samples of 25 different postscript fonts and a twenty-state Hidden Markov Model, the
recognition rate was 97% for symbols from the trained fonts. When using symbols
from untrained fonts, the rate was still around 70%.
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Figure 2.2: Token look-up for a point on the outline of a symbol. (Illustration from [26])
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2.2 Gesture Recognition

Figure 2.3: Combination of two prototype curves (black) of two different gestures with fuzzy
states centered at about the white vectors. (Image from [88])

2.2 Gesture Recognition

Much work has been done dealing solely with the issue of recognizing gestures. For
example Wilson and Bobick [88] introduced configuration states to represent and rec-
ognize gestures. Using a sequence of n such states they define a prototype gesture,
Gα = 〈α1α2 . . . αn〉. For recognition, a set of trajectory sample points x1, x2, . . . , xN
is compared against the prototype of a certain gesture. Since a gesture will unlikely
be repeated with the exact same state sequence, the states need to incorporate “fuzzi-
ness” to account for the variance of position. To solve this problem, a point x in
configuration space2 is assigned to a fuzzy state si using a fuzzy membership function
µsi

(x) ∈ [0, 1]. However, besides the variance in position, a repetition of the same ges-
ture can also vary in time which should not alter the result of the recognition process.
Wilson and Bobick deal with this by computing a prototype curve as seen in Figure
2.3. It is parametrized by arc length while at the same time preserving the correct or-
der of states. Their concept is proven by successfully applying their method to three
different types of sensory data: two-dimensional mouse gestures, hand movements
measured by a magnetic spatial position and orientation sensor, as well as digitized
image sequences of hand movements.

Yang and Xu [91] chose a different approach. For dealing with the variability of
human gestures, they employed Hidden Markov Models. The interesting part of the
work done by Yang and Xu is the conversion of gestures into a sequence of discrete
symbols. The short-time Fourier transformation (STFT) is used to block the original
signal into frames. From the amplitude of the FFT coefficients, a set of feature
vectors is constructed which is then discretized using the LBG algorithm [52] for
vector quantization. The indices from the code book represent the input symbols for
two-dimensional Hidden Markov Models. Experiments showed a recognition rate of

2configuration space : space of measurements that define each point of an example gesture
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2 Related Work

up to 98.78% for an isolated recognition task with nine gestures performed with a
mouse input device.

In an effort to give users the opportunity to interact without any additional de-
vices, Stark and Kohler [78] presented ZYKLOP, a video-based gesture recognition
system for human computer interaction. While handling classic computer vision is-
sues such as image segmentation, their system produces knowledge bases containing
information of gestures via a learning step. This step includes the construction of
reference vectors from the segmented data of several gesture samples. One part of
this process is to calculate the center of mass and ensuring rotational invariance. The
recognition is done through correlation of the feature vector and the stored reference
vector, or through decision surfaces. For the latter, each feature vector is interpreted
as point in d-dimensional space. The space is separated by hyperplanes into regions
which correspond to one of k gestures. In this case, the learning step is used to de-
termine the coefficients of the hyperplanes. With this approach, the system is able
to recognize single frame hand gestures which are defined as hand postures with an
associated meaning. To be able to recognize a sequence of gestures, the system im-
plements the concept of a finite automaton. Every automaton is assigned a validity
value and a gesture sequence. After processing the sequence input, the automaton
with the highest validity that is in a final stage represents the recognized gesture se-
quence. Additionally, the system is also capable of recognizing motions by evaluating
a sequence of centroids. For all centroids in a sequence, a center of mass, distance
of each vertex to the center and the connection angle for two succeeding points are
calculated. The resulting feature vectors can again be compared to reference vectors.
The ZYKLOP system was used in two different applications (a presentation system
and Geomview 3) with eight different gestures taken from 14 different persons achiev-
ing recognition rates of up to 93.44%. Stark and Kohler also identified the importance
of providing feedback to the user. While running the ZYKLOP interface, a window
permanently displays the image recorded by the camera. A colored frame indicates
whether a gesture has been recognized or not.

Eisenstein et al. [23] stated that most work done in the field of gesture recog-
nition suffers from device dependency. They introduced a layered framework where
only the lowest layer is device dependent. Although in their work they showed only
independence of different glove input devices. By transforming the device-dependent
raw input data to postural predicates, they were able to make use of simple template
matching algorithms instead of using more complicated techniques such as neural
networks.

In coherence with his attempt of providing a mathematically uniform presentation
of the theory of Hidden Markov Models, Mäntylä presented a gesture recognition sys-
tem based on the idea of unistroke alphabets [57]. The gestures were to be performed
with a pen-like accelerometer system around a fixed center of action. Preprocessing
and feature extraction were performed using a MATLAB environment. The k-means

3Geomview is a software to present and manipulate geometric data, developed by the Geometry
Center at the University of Minnesota.
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2.3 Gesture Control

algorithm was applied to quantize the resulting feature vectors of 90 training sam-
ples for each gesture. The quantized data was fed into Hidden Markov Models of a
strict left-right topology. His results suggest that the quality of recognition generally
increases proportional with the number of training samples. He also found that the
more complex a gesture, the more states should be used in the corresponding Hidden
Markov Model.

2.3 Gesture Control

While the before mentioned approaches set the goal predominantly on recognizing
gestures, all of them integrated experiments to use their algorithms within a certain
application. The following section introduces gestures as a specific means to interact
within a virtual environment. In 1996 Pavlović et al. [66] presented a gestural interface
for a system called MDScope stating that the original mouse and magnetically tracked
pointer interface hindered a natural interaction. The interface included a simple
image-based algorithm to use the index finger as 3D pointing device. To manipulate
objects a set of static and dynamic hand gestures was defined. Extracted features
were then used to train four-state Hidden Markov Models with 35 training sequences
yielding 80% of correct recognitions.

O’Hagan et al. [64] introduced a vision-based gesture recognition framework for
a virtual working environment. An underlying manually acquired model of the hand
simplifies feature extraction and aids the tracking process after segmentation. Five
gestures were chosen to correspond to as many tasks common for virtual environments:
selection, object/scene translation, object/scene rotation, object resizing and scene
zoom. To classify the gestures, the statistical approach of building a set of logistic
regression models was applied. For each gesture one model is constructed as a linear
function of predictor variables Xi such that

g(x1, . . . , xp) = β0 + β1x1 + . . .+ βpxp, (2.1)

where (x1, . . . , xp) is a feature vector of predictor variables and β0, . . . , βp are the
model parameters. The model parameters are estimated through a set of feature
vectors from a training set of 900 images per gesture. The model equations are
used during the classification process to calculate the probability of the extracted
vector elements belonging to one of the models. The equation producing the highest
probability represents the recognized gesture. If the probability value lies beneath a
certain threshold, the image is classified as unrecognized. Even with the difficulties of
feature extraction and segmentation in a vision-based system, this technique achieved
a recognition rate of 92.60% while maintaining a frame rate of 30 Hz.

For the VE application Smart Design Studio, developed at the Italdesign-Giugiaro
Virtual Reality Centre, Kela et al. [42] presented a study on the usage of gestures
for controlling this application. They found that the “right” gesture for a certain task
depends on the individual, making it important to give the user the opportunity to
personalize the set of control gestures. Their study also showed that the modality

9
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Figure 2.4: The SoapBox sensor device. (Image from [42])

preferred by a user depended heavily on the task performed or the educational back-
ground of a user. Those results indicate the advantages of having a multimodal system
to give a user the choice which input method to use for which task. To input gestures
a special device called SoapBox (Sensing, Operating and Activating Peripheral Box )
was used. Figure 2.4 shows this matchbox-sized device which includes a three-axis
acceleration sensor, an optical proximity sensor and an optional temperature sensor
[82]. The three-dimensional acceleration data was preprocessed to first train discrete
Hidden Markov Models and later to recognize the issued gesture. To minimize the
number of training vectors, noise was added to copies of the original gesture data [41].
With this technique, a recognition rate of 96.40% was achieved for only 2 training
vectors if the gestures to be recognized were performed by the same user whose data
was used to train the Hidden Markov Models.

A similar approach was tested in connection with the VRGeo project at the
Fraunhofer IAIS. The accelerometer of Nintendo’s Wii Remote was used to record
three-dimensional trajectories of predefined gestures. After discretizing the data it
was used to train a nine-state Hidden Markov Model. Unfortunately, this attempt
did not yield the desired results leading to the work presented in this thesis.

10



3 Virtual Environments

A virtual environment is a computer generated environment aimed to provide a user
with the experience of being in a simulated place. This is usually achieved by blocking
stimuli from the “real” world and replacing them with synthetic ones. Sherman and
Craig [73] identify immersion, sensory feedback and interactivity as the key elements
of perceiving a virtual environment. Immersion is closely related to the deployed
display technology (see Section 3.1). It can be described as the feeling of being part
of the virtual environment or becoming unaware of the physical surroundings. Sensory
feedback allows a presentation based on a user’s position and depends on input devices
as well as output hardware. Interactivity refers to the ability of a user to interact in
some way with the artificial surroundings or the objects in this virtual world. Typical
examples would be navigating through the environment, moving objects or initializing
simulations. All of those elements eventually have an effect on the presence, the sense
of actually being in the virtual environment [84, pp. 4–5]. Obviously, fidelity of
sensory feedback and the level of interactivity can increase the feeling of immersion
and the sense of presence. On the other hand, inaccurate, cumbersome or unfamiliar
devices and displays can also distract a user from the environment which influences
immersion and presence negatively.

The term virtual reality (VR) is commonly used synonymously to virtual envi-
ronments. However the definition of VR differs since it is relatively new. It can mean
the field of study which deals with creating and improving the synthetic experience
described earlier, but also the technology or medium used to create this experience or
even the experience itself. [14][43, pp. 3–7]

At first, this chapter introduces the basic components of virtual environments
contributing to the key elements mentioned above. Afterwards, virtual reality soft-
ware frameworks are discussed, because they are extensively used to design virtual
environments and the interaction within it.

3.1 Displays

When dealing with virtual environments, the term display is not constrained to the
conventional meaning of visual display. Although visual displays are used most ex-
tensively in VR, it refers to any sensory output used to simulate stimuli. The goal
is, of course, to synthetically stimulate as many of the human senses as possible. As
a result various kinds of output devices exist. The most common devices simulate
visual, auditory and haptic stimuli. Some applications also make use of the olfactory4

4The sense of smell.
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(a) Occlusion (b) Shadow casting (c) Illumination

Figure 3.1: Several monoscopic depth cues that can be achieved using still images. (a)
Through occlusion it is depicted which object is further away from a user. (Il-
lustration from [21]) (b) Shadows can be used to show spatial relationships
between objects. (Illustration from [6]) (c) Proper illumination can also depict
depth information about an object.

sense. Stimulating all senses simultaneously is often too expensive or too unsatisfac-
tory because of imperfect technology or in most cases not necessary. For instance,
the displays used for this thesis appeal mostly to the visual sense. Other senses are
disregarded for the most part. Therefore, this section will emphasize visual output de-
vices and briefly mention auditory and haptic displays. A comprehensive description
of output devices can be found in [12] and [73].

3.1.1 Visual Displays

Virtual environments usually simulate three-dimensional scenes. To convey the three-
dimensional structure to a user, the depth information of the scene has to be visual-
ized. Several techniques exist to provide depth cues out of static images but also out
of image sequences. Well-known techniques include occlusion, shadow casting, illumi-
nation or motion parallax (illustrated in Figure 3.1 and Figure 3.2). A very powerful
method, however, is to use stereopsis. The human vision is based on an effect called
binocular disparity. Each eye receives an image which has a slight offset to the other
due to the position of the eyes. Fusing both images results in a mental image that
contains very strong depth cues called stereopsis which is especially effective within
a range of approximately 5 meters. Stereoscopic VE displays reproduce this effect by
generating separate images for each eye. [11, pp. 34–40][73, pp. 116–121]

One of the most well-known display systems to achieve this effect is the head-
mounted display (HMD). HMDs are the most common of the so called head-coupled
devices which are attached to a user’s head. They usually include two separate screens
mounted right in front of each eye displaying the according picture. In most cases this
type of visual display totally occludes the outside world. Alternatively, the screens
can be replaced with semi-transparent mirrors onto which the scene is projected.
This allows users to see the real and the virtual environment simultaneously. The
perception of reality is augmented with additional information, hence, this technique
is called augmented reality (AR).

Another type of visual displays are projection-based, examples are the CAVE
[19], the Responsive Workbench [46] or the ImmersaDesk [20]. The advantage of
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Figure 3.2: This sequence of images conveys depth information using motion parallax. As
the view changes the object in front seems to have moved further than the
others. (Image from [21])

those systems is that users can move freely in front of the display and that they are
able to see their own bodies. The latter is advantageous because the parts of the body
that a user needs to see in the virtual environment do not have to be remodeled in 3D.
The problem with projection-based systems is that there are not two separate screens
to display pictures for both eyes. While monoscopic and motion depth cues can easily
be achieved, special techniques have to be applied to realize stereoscopic depth cues.
The common techniques are divided into passive and active stereo vision. When using
a passive method, filters are attached to a pair of 3D glasses worn by a user. Older
systems often used spectral multiplexing generating the different views in a different
color. The glasses would then filter the colors so that only the “right” picture would
reach the eye it was designated for. Today INFITEC (interference filter technique)
[39] is the most advanced spectral multiplexing technique. For this method, triple
band filters are placed in front of the projectors to additional filter material deposited
onto glasses. The stereoscopic images are displayed in parallel with two primary
color triplets of different wave lengths. In this way INFITEC systems are capable
of visualizing high quality images in full color. While the older technique caused
the effect of seeing one reddish and one greenish picture disturbing the experience,
INFITEC eliminates this problem, increasing the feasibility of this technique for VR
applications. It is currently more common to use polarization for image separation.
A filter in front of the projectors polarizes the emitted light so that for example the
picture for one eye is made up of only horizontal light waves and that of the other
eye of vertical. The glasses are built so as to allow only the corresponding polarized
light waves to pass through and reach the eye. Since a tilt of the head will noticeably
decrease image quality when using linear polarization it is advantageous to polarize
the light circularly. However, no matter which one of these techniques is used, two
aligned projectors are necessary to create a single image. In the case of polarization,
it is also obviously important that the material the scene is projected upon must not
change the polarization of the light. [73, p. 124]

Other systems use shutter glasses to achieve temporal multiplexing of the visual
signal. Since they actively open and close their shutters, this technique is called active
stereo. The glasses are synchronized with the refresh rate of a projector or monitor.
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(a) (b) (c)

Figure 3.3: Three examples of visual VR displays. (a) The CAVE Automatic Virtual En-
vironment (Image from [20]) (b) The Responsive Workbench. (c) The Immer-
saDesk. (Image from [20])

The pictures for the left and the right eye are alternated so that at the time the
picture for the left eye is on screen the shutter in front of the right eye is closed and
vice versa. To avoid flickering the projection system must perform at high refresh
rates. Since two separate pictures are alternated the actual frame rate is cut in half.
[11, p. 41]

To ensure the presentation of the virtual world in a correct perspective, position
and orientation of the user’s eyes have to be tracked (see Section 3.2). Most visual
display systems are capable of generating one stereoscopic image at the time. Conse-
quently, only one user can be tracked by the system. This results in a more or less
distorted view for every other user depending on the distance to the tracked user.
However, there are a few multi-user systems such as the TwoView display developed
at the Fraunhofer IAIS described for example in [71]. The TwoView (see Figure 3.4
(a)) is able to display to active stereoscopic image pairs at the same time. Thus,
two users can be tracked. The separation of the user dependent views is achieved
by circular polarization while the separation of the stereoscopic images is done us-
ing shutter glasses. Two active stereo projectors with attached oppositely circularly
polarized filters project a picture onto the back of a screen that preserves the polariza-
tion. Thus each projector generates a stereoscopic picture for each user. Additionally,
the TwoView also allows an L-shape configuration for a single user where a second
image is projected onto the floor (illustrated by the gray projection in Figure 3.4
(a)). Other multi-user systems use modified shutter glasses and projectors for tem-
poral multiplexing. For example, the Multi-Viewer Stereo Display [32] is capable of
showing stereoscopic pictures to up to four users.

Systems with a panoramic display intended for a larger audience like the i-Cone
[74] (see Figure 3.4 (b)) abandon head-tracking entirely. Instead, the view of a fictive
person standing in a central position is displayed. All viewers standing far from the
center see a slightly distorted image. For objects further away in the scene, this
distortion is barely noticeable and can be disregarded. One problem with the fixed
viewport is the loss of correct perspective stereo when turning away from the fixed
viewing direction. This problem can be solved by using the OmniStereo technique
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(a) The TwoView display. The inde-
pendent user views are indicated by
the red and green projection.

(b) The i-Cone surround screen display.

Figure 3.4: The TwoView and i-Cone displays developed at the Fraunhofer Institute for
Intelligent Analysis and Information Systems IAIS.

[75]. The total 240 ◦ display is split into partial segments and for each segment the
viewport is slightly turned to face that segment. The result is an approximately
correct perspective in every viewing direction. A similar technique is applied to the
projections in the Immersion Square [35], a CAVE-like virtual environment based
on standard components developed at the Bonn-Rhein-Sieg University of Applied
Sciences.

3.1.2 Auditory Displays

Authentic sound adds to the realism of a virtual environment. A visualized scene
lacking the sound present in the real world just does not seem credible. Just as
visual displays utilize several depth cues to create 3D images; azimuth, elevation and
range cues can be used to convey three-dimensional information about sound sources.
If the simulated position of the source complements the perceived visual feedback,
immersion, interactivity and image quality are increased tremendously. Although
highly immersive virtual environments should incorporate 3D sound for the sake of
realism, many VR applications omit this feature. In many cases playing ambient
sounds and providing strong visual cues5 to aid localization of sound sources is enough
to enhance the sense of presence.

If 3D sound is necessary or desired it can be realized using multiple speakers.
Simple forms are the stereo or the well-known 5.1 surround format (see for exam-
ple [45]). The three-dimensional sound field can be recorded using separate channels
for each speaker. Each channel must then be mapped to the corresponding speaker.
When actually rendering audio, i.e. localizing a mono signal in 3D space, three main
techniques can be applied. The most widespread method is amplitude differencing. As

5The so called ventriloquism effect explains how humans localize sound sources based on visual cues.
From experiences learned, an assumption is made where the sound is supposed to be coming from.
E.g. by hearing somebody talk and seeing someone’s mouth move, it is assumed that this person
is the origin of the sound. For a more precise definition see [3] or [18].
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the name suggests, differences between the signal’s amplitude from different speakers
are used to suggest sound coming from a certain direction. The two most influen-
tial amplitude differencing techniques are ambisonics [25] and vector based amplitude
panning (VBAP) [69]. Both approaches are capable of rendering three-dimensional
sound with a variable quantity of speakers. Otherwise it is possible to create phantom
speakers through convolving the sound signal displayed by only two speakers. This
binaural technique developed at NASA makes use of two Fourier transforms called
head-related transfer functions (HRTFs) [79]. These functions can be measured for
each individual and take in account the physical characteristics of a human that influ-
ence how sound reaches the ear canal. Some of these characteristics are the structure
of the pinnae, distance between both ears or even the shape of the upper torso. Filter-
ing the signal with the HRTFs, in combination with tracking the user’s head, the user
experiences the sensation of hearing the sound from a virtual speaker at the position
of the virtual sound source. The problem with HRTFs is that they are unique for
every user and convolving a signal with the HRTF of a different individual results in a
worse localization. It is still not possible to devise sound systems that are taylor-made
for a user’s own HRTF. Modern 3D sound cards use digital signal processing (DSP)
chips and HRTF look-up tables to approximate this effect for a certain zone in front
of two speakers. The major drawback of amplitude differencing and binaural methods
based on a loudspeaker setup is that a user needs to remain in a certain “sweet spot”
to experience the sensation of 3D sound. Wave field synthesis (WFS) [80] utilizes
an array of many speakers to distribute sound throughout an entire room. Hence,
a user is able to move freely about the environment. The sweet spot problem can
also be solved using headphones. Since the head-based aural displays are mounted
directly in front of each ear the recipient will always remain in the same spot com-
pared to the output device. The use of headphones includes the additional advantage
that crosstalk is precluded. The often discomforting feeling of being sealed off from
the physical environment by closed-ear headphones can be attenuated with open-ear
(hear-through) headphones, a concept similar to that of conventional and see-through
HMDs. [12, pp. 84–92][73, pp. 164–177][84, p. 63][90]

Other auditory displays pursue a different goal than creating realistic 3D sound.
Sometimes sound can be used as a sensory substitution for a sense not displayable in
the current environment. For example, pressing a button in the virtual world could
play a sound instead of providing an haptic feedback like in reality. Another possibility
tor the use of audio is sonification. Just as visualization can help humans interpret
and understand data, it is imaginable, for example, to convert one or more dimensions
of a multidimensional data set into sound. [11, p. 67]

3.1.3 Haptic Displays

Sometimes it is necessary, even in the real world, to touch something to convince
ourselves of its realness. Simulating physical contact can, therefore, convey a great
deal of information about a virtual object to a user. Mechanical devices are needed to
transport those information such as weight, surface texture or rigidity to a user. The
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(a) (b)

Figure 3.5: Two haptic displays. (a) A version of the ground-referenced Phantom with
an integrated stylus-like device. (Image courtesy of SensAble Technologies,
www.sensable.com) (b) The CyberGrasp haptic force display. (Image courtesy
of Immersion Corporation, www.immersion.com)

Phantom is a well-known ground-referenced haptic device which is able to simulate
contact with hard objects (see for example [12, pp. 104–105]). The advantage of such
ground-referenced devices is that a user does not need to carry their weight, usually
increasing comfort. On the other hand they can only be used within a limited range.
Body-referenced devices are usually connected to a part of the user which allows the
user to move freely, solving the problem of limited interaction range. However, since
the user needs to carry the device, size and weight are critical factors that must
be considered. An example of a body-referenced device is the CyberGrasp (see for
example [12, pp. 107–108]). Yet another type of haptic displays are tactile devices.
Those are usually much smaller and lighter than force displays, i.e. the aforementioned
body-referenced and ground-referenced devices. Normally, they use actuators like
vibrators as those common in modern video game controllers. The simulation of
temperature is also possible but not very common. [12, pp. 92–110][84, pp. 79–80]

3.2 Input Devices

The selection of input devices for virtual environments is just as important as the
choice of output devices, as a user needs them to communicate with an application.
Which devices are needed usually depends heavily on the type of application and the
tasks that needs to be supported; thus, they are often designed for a specific cause.
However, input devices are not only used to allow interaction, but also to display
information correctly to immerse a user. The most characteristic property of an VR
input device is its degree of freedom (DOF). The degrees of freedom identify how
many independent translational displacements and rotations can be detected by the
device. E.g. common tracking devices are able to determine the three-dimensional
position as well as the orientation in space of a tracked object, therefore, allowing six
degrees of freedom. It is also possible for devices with smaller DOF to emulate higher
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Figure 3.6: The Pinch glove, a discrete VR input device. (Image courtesy of Mechdyne
former Fakespace Corporation, www.mechdyne.com)

DOF. For instance, on a generic computer mouse which only allows two DOF, the
wheel could be used to provide a third degree of freedom.

Input devices can be classified as either discrete, continuous or a combination of
both. Discrete input hardware generates one event at the time due to an action of a
user. In most cases this will be the pressing of a button or the like. The most common
discrete input device for desktop applications is the keyboard. In VR the use of a
keyboard is usually impractical. There the Pinch glove, for example, would be more
suitable (see for example [11, p. 297]). It is a glove that uses sensors to detect contact
of two fingertips to generate the event (see Figure 3.6). Continuous input devices
generate a stream of data, e.g. position, orientation, acceleration, etc. In practice,
a combination of continuous and discrete input devices is often used. In this case
a user often induces the continuous sampling of a certain property by generating an
event, like pressing a button. Such combined devices are frequently used in connection
with event-generating recognition systems, e.g. speech or gesture recognition. Input
devices also need to support low latency to ensure real-time interactivity and high
update rates for an ample temporal resolution.

The most common continuous devices for VEs are trackers and data gloves. In
virtual environments it is necessary to know position and orientation of a user to
ensure correct stereopsis and motion parallax. Therefore, the provision of a tracking
system is most essential for VR applications. Magnetic and optical tracking systems
are the most common techniques. Magnetic trackers contain a device (source) that
transmits a magnetic field of low-frequency. Bringing small sensors (receivers) into
the calibrated magnetic field will induce voltage that can be used to estimate position
and orientation in respect to the source. The problem is that any other conductive
material will interfere with the magnetic field and cause a loss of accuracy and possibly
the need for recalibration. Common optical tracking systems usually emit infrared
light to track retroreflective markers. Triangulation of points from different cameras
allows the calculation of the exact position of the marker in 3D space. Combining
several markers in a fixed constellation to form one target makes it possible to also
retrieve the orientation of the target. Those targets can be attached to stereo glasses
or interaction devices. Optical tracking systems and the individual targets only have
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to be calibrated once and produce highly accurate results. One issue to be dealt with
is occlusion of targets or individual markers, especially if several tracked users can
move freely within the environment. Generally, it is possible to solve this problem
by strategically placing more cameras. It is obvious, however, that more cameras will
complicate the tracking algorithm and increase costs. The interference of ambient
light or infrared radiation also needs to be kept at an minimum, e.g. by assuring
constant lighting conditions. Another problem is that most optical techniques are not
quite appropriate for tracking hand or even finger movements if necessary. In this
case data gloves can be deployed to retrieve hand position and even the rotation of
finger joints.

Alternative tracking methods utilize sound waves, accelerometers or gyros or
sense joint movements of mechanisms. Depending on the application or setup of the
system, the optimum method needs to be determined by the designer based on the
individual properties. [11][43, pp. 115–120][73]

3.3 Interaction

As mentioned before, interaction is one of the key elements for experiencing virtual
environments. It allows a user to influence certain properties of the virtual world or
objects within it. The raw data coming from the input devices is mapped in a fitting
manner into the virtual environment. According to Mine, the interaction techniques
implemented with suitable input devices can be categorized into the following main
forms [59]: navigation, selection, manipulation, scaling and virtual menu and widget
interaction. Scaling can be seen as part of manipulation and selection is usually closely
related to manipulation. In general it is arguable how many categories are used to
define interaction techniques in virtual environments depending on the point of view,
the approach and the necessary detail. However, it should be apparent that navigation,
manipulation and some sort of system control are three generic categories inevitable
for creating an interactive VR experience [11, 73]. Several techniques have been
created to perform interaction tasks in VE. Gesture recognition is one of them and has
actually been successfully applied to navigation [64], selection [66] and manipulation
[78] tasks.

Navigation is always a part of a virtual environment in some part. While this
interaction is mostly perceived just as moving through the virtual world, it is actually
a combination of such movement (travel) and wayfinding. The purpose of wayfinding
is to enable a user to figure out the current location and a path to a future destina-
tion. To achieve this goal a user needs to construct a cognitive map of the synthetic
surroundings. This process is usually supported by wayfinding aids such as placing
key landmarks, providing a map or instruments like a compass. After users find out
where they are and where to go, they need a way of getting there. Physical movement
is obviously the most natural way of exploring a virtual environment but might not be
the most fitting. Humans are able to get accustomed to new interfaces. This skill can
be taken advantage of when designing new interfaces. The method of control used
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by the interface depends on the type of experience the application should provide.
The most common are physical and virtual controls. Physical controls utilize physi-
cal devices such as steering wheels, usually in an attempt to recreate the experience
of controlling a specific vehicle. The biggest advantage is the haptic feedback users
receive automatically as they interact with a device. Virtual controls have the advan-
tage of being more generic, flexible and without constraints of the real world. They
can also easily be used to emulate physical devices. Since they are part of the virtual
world, they can be positioned arbitrarily within the scene or even be hidden until
specifically needed. Independent from the type of control a user needs to be able to
control velocity and direction of travel. The speed depends on the distance between
objects in a scene. If the participant needs to move across long distances it makes
sense to travel at higher speeds. The method of travel dictates whether a user must
be capable of changing the direction. E.g. when using the ride along travel paradigm,
the path is predetermined by the application, but in a fly-through or walk-through
environment, it would not make sense to constrain a user to movement on a straight
line only. [73, pp. 332–362]

Being capable of manipulating objects in a virtual environment or even the en-
tire virtual world is what makes VR applications so interesting. The most common
manipulations are positioning and sizing objects, applying force to virtual objects,
modifying global or object attributes and changing the state of virtual controls. In
the majority of cases this will require an additional selection process to determine
what is to be modified. Selection is either performed before or sometimes at the same
time as the manipulation. Methods to achieve both selection and manipulation are
manifold and will not be covered by this thesis in detail. A good overview is pre-
sented in [73, pp. 286–332]. Similar to the navigational task, most manipulations can
be achieved through physical or virtual controls, but direct user controls and agent
controls are also common (see Figure 3.7). Agent control is a method where an aide
actually performs a task given by a user. In most cases speech control will be used for
this type of interaction, but gestures are also common. An example is MIT’s Officer
of the Deck [93] where a trainee commands a virtual submarine crew. In direct user
control, the application tries to simulate the real world interaction between a user
and an object. The grab with fist interaction is such a method where the participant
needs to close the hands to form a fist. The object close to the hands is “grabbed”
and can be moved with the hands until the fists are unclenched. Direct user control
is probably the most natural way of manipulating virtual objects. However, just as is
the case with navigation, the most natural form is not necessarily the most adequate.
One major advantage of virtual reality is that manipulation is not bound to the same
restrictions as in the real world. A designer has much more freedom in creating an
appropriate experience for the given task at hand. Often when people speak of a
natural interface they actually mean an intuitive interface, one that is easy to learn.
However, in the case of interfaces it is simply a matter of familiarization. If someone
is used to a certain method of interaction, any similar method will be easy to use
quickly, even if the familiar way is not natural at all. A good example is the computer
mouse. People have become accustomed to interacting with a desktop environment
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Figure 3.7: Four categories of manipulation in VR applications. An example for each class
shows a user moving a table. (Image from [73])

with this device. Although no interaction we perform in nature is similar to the usage
of a computer mouse, every new method that relates to this methodology is quickly
dubbed natural. [73]

To allow navigation as well as manipulation, the participant needs to be capable
of communicating with the application, i.e. to control the system. In most cases this
will involve a physical input device and a variety of virtual controls. Some consider-
ations about the way users communicate within a virtual environment have already
been presented in the two preceding paragraphs. Besides performing navigation and
manipulation tasks, it might also be necessary to pass metacommands to the appli-
cation. These are commands that control the underlying simulation, e.g. loading a
new data set or scenario or undoing an action. Since controlling an application on
this level will usually decrease the immersion effect, it may be intended by the de-
signer to specifically allow or deny the participant to perform such actions. Thus, it
is important to consider what kind of experience is meant to be achieved. Collab-
orative environments are another case that must allow communication between all
participants. Only then is it possible to share the VR experience, as well as thoughts,
suggestions and ideas. If users are in the same room using seethrough glasses or
HMDs like when using the TwoView display, this is not an issue. The participants
can see each other, see what the other is doing and easily talk to each other. This
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changes as soon as the participants do not share the same room. It is usually not
enough to display the absent user’s actions in the local environment. Collaboration
relies heavily on communication, especially aural and visual signals. Therefore, the
application should relay a participants voices and maybe even their body movements
so the others are able to perceive them. [73, pp. 362–377]

Which type of control to use depends on the experience that is meant to be
created. If the goal is to create an environment which is as realistic and immersive
as possible, the choice of truly natural interaction such as the direct user control is
reasonable. However, in many contexts such as the sciences or in the industry, a
crucial factor is time. The value of getting a task done more quickly is appreciated by
many professionals. In this case the interface does not necessarily have to be natural,
it must allow efficient work. One way to achieve this efficiency is the provision of
expert controls. These controls are usually neither natural nor intuitive, but must
be learned and memorized. The classic example are key combinations to quickly
call a certain function of an application, such as pressing the crtl -key and the c-key
simultaneously to copy text or images (cf. [55, pp. 67–68]). Once the controls are
memorized they can be deployed to rapidly achieve tasks that would otherwise require
several subtasks and slow down the overall workflow. In the example it would mean
selecting the text or image to be copied, opening a menu, finding and selecting the
copy command instead of just using the key combination. In VR applications, input
devices normally lack a great number of keys or buttons, limiting the adoption of
the mentioned key combination method. Thus, a different technique is necessary to
achieve the same effect without disturbing the workflow. Voice or gesture input are
common choices to create similar short cuts.

3.4 VR Software Frameworks

VR software frameworks are the basis for the development of interactive VR applica-
tions. They offer access to relevant technology and contain abstractions for tracking
systems, input and output devices, as well as scene graph and rendering APIs. In most
cases they will also include helpful software libraries and provide a scripting interface
for rapid application development. Several frameworks exist that all have certain
focal points, pursue a specific approach or were designed for a particular problem.
Examples are VR Juggler [4], HECTOR [87], Lightning [7], Avalon [2] and basho [56].
The VR framework utilized for this thesis is called AVANGONG [47]. A description
can be found in Section 5.3 on page 39.
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Hidden Markov Models (HMMs) had been studied long before the advent of vir-
tual environments. Named after the Russian mathematician Andrei Andrejewitsch
Markov, they were first mentioned by Leonard Baum and his colleagues in the late
1960s. However, despite several publications in the 1960s and 1970s, this statistical
model had not been commonly used in the field of pattern recognition until the 1980s
[70]. HMMs are mostly known for their application in speech recognition [27, 37, 51]
and more recently also as a tool for analysis of biological sequences such as DNA [29].
Today HMMs are widely used in many fields, for instance robotics [50, 92], recogni-
tion of handwriting [24], fraud detection [77], gesture recognition (see Chapter 2) and
many more.

When reading about systems similar to the one presented in this thesis, it is
quite noticeable that many methods employ Hidden Markov Models for the task
of recognizing gestures. Due to this widespread usage and their ability to model
sequences of events with temporal and dynamic variations, this approach was chosen
for the implementation. The theoretical basics of Hidden Markov Models covered
in this section are fairly easy presuming some basic knowledge of statistics. The
application of HMMs in practice, however, leads to a couple of problems which will
be described in Section 5.

4.1 Definition

Since HMMs are applied to various problems of pattern recognition and machine
learning, a few introductory tutorials have been published. For example [27], [29], [57]
or [70] give good overviews to help readers understand the theory of Hidden Markov
Models from a more practical point of view. An HMM is a doubly stochastic process
with two levels. The first level is described by an underlying Markov chain with a finite
set of N states: s1, . . . , sN . The stochastic process describes transitions between those
states at regularly spaced discrete times based on transition probabilities associated
with each state. Calculating the probability of the system being in a certain state
at a specific time t = 1, 2, . . . would require a description of the current state and all
predecessor states. However, an additional restriction, the Markov property, simplifies
this problem by considering only a finite set of predecessor states. This means, in the
case of a discrete, first order Markov chain, which is most commonly used, the present
state depends only on the very last predecessor state. If Si describes the state at time
t = i for i ≥ 1, then the description is simplified as follows:

P (St|S1, S2, . . . , St−1) = P (St|St−1). (4.1)
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The Markov chain is therefore memoryless making the transitions time independent.
Hence, the temporal behavior can be described by a set aij of the form

aij = P (St = sj|St−1 = si), 1 ≤ i, j ≤ N (4.2)

where aij ≥ 0 and
∑N

j=1 aij = 1.
On the second level an output is generated at each time t, usually referred to

as emission Ot. The probability for generating a certain output at the given time
depends only on the current state.

P (Ot|O1, . . . , Ot−1, S1, . . . , St) = P (Ot|St) (4.3)

The sequence of emissions from the model is the only thing that is revealed to an
observer. Therefore, the emissions are sometimes referred to as observables. The rest
of the model stays hidden, hence, the name Hidden Markov Model. A first order
HMM λ is completely defined by:

• a finite set of states {s1, . . . , sN},

• a transition probability matrix A = {aij|aij = P (St = sj|St−1 = si)},

• an initial state distribution π = {πi|πi = P (S1 = si)} describing the probability
of being the initial state for each state,

• and an output probability matrix with state specific probabilities
B = {bj(ok)|bj(ok) = P (Ot = ok|St = sj)} for discrete HMMs or
B = {bj(x)|bj(x) = p(x|St = sj)} for continuous HMMs.

The complete HMM is usually denoted as triple λ = (A,B, π). In the case of discrete
HMMs the observables of the model are of a discrete set of symbols {o1, . . . , oM},
sometimes also referred to as alphabet. Then bj(ok) are discrete probability distribu-
tions. Discrete HMMs are often used to introduce the concept of the Hidden Markov
Models, but they usually require a preprocessing step to quantize continuous data into
a sequence of discrete observations. This additional step often renders them unfeasible
for many applications. Today continuous HMMs are used for the majority of applica-
tions. For continuous models, the observations are vectors x ∈ Rn and emissions are
described based on continuous density functions bj(x) = p(x|St = sj). However, the
majority of papers found during research use discrete HMMs for simplicity. Further,
to appropriately represent the distributions in Rn parametric descriptions are needed.
Those are known, however, for a small subclass of distributions only, e.g. the Gaussian
distribution. Those kinds of distributions will usually not fit the problem, since the
designated issues are always described by unimodal distributions. As a solution it is
common to use mixture densities which further complicates the issue. Consequently,
the work presented in this thesis and therefore the description of HMMs will deal with
the discrete case only.

Due to the underlying structure of a Hidden Markov Model, it can be seen as
a finite state machine. The state transitions are described by the probabilities aij
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mentioned above. In the most general case, every aij is positive, i.e. each state can
be reached directly from any other state in the chain. HMMs with this property are
called ergodic or fully connected models (see Figure 4.1 (d)). This case, however,
is often undesirable because the more transitions are possible, the more parameters
need to be trained and the more paths through the model are possible. Therefore, it
makes sense to limit the number of possible state transitions for certain applications.
When trying to recognize speech, handwriting or gestures, the signals have a distinct
temporal order which suggests a linear transition of states (see Figure 4.1 (a)). This
is the most simple topology meeting the temporal property. It allows only transitions
to the same or the next state. In the case of a four-state model, the transition matrix
would be

A =


a11 a12 0 0
0 a22 a23 0
0 0 a33 a34

0 0 0 a44

 (4.4)

where a44 = 1. The small number of parameters decrease the complexity and increase
manageability. The disadvantage of the linear HMM is that it is too restrictive.
Loops allow for variation in length of the modeled signal, but all states need to be
traversed. A topology used to loosen these restriction is the left-right model, which
allows transitions to all predecessor states but not to any previous states (see Figure
4.1 (b)). In this case the state transitions have the property

aij = 0, j < i (4.5)

In this way it is possible to “skip” parts of a signal by still accounting for its linearity.
To prevent missing parts that are too long, constraints on the transition probabilities
like

aij = 0, j > i+ ∆ (4.6)

are introduced. In speech and handwriting recognition ∆ is often set to 2. This
common topology is referred to as the Bakis model (shown in Figure 4.1 (c)). One
problem with all of the topologies, minus the ergodic, is that start and final state
need to be known. A problem which is discussed in Section 5.5. One important
advantage of HMMs is that a combination of HMMs is still an HMM. Thus, even the
different topologies can be combined to benefit from the different advantages. In this
way the flexibility of the model can be improved while at the same time limiting the
complexity. [29, pp. 67,127–128][60][70][92]

4.2 Parameter Estimation

A completely defined HMM as described in the previous section can easily be used to
produce a sequence of observations. Starting with a state, chosen using the initial state
distribution π, an output can be generated and a state transition can be performed at
each time step according to the probability distributions associated with the current
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(c)(a)

(b) (d)

Figure 4.1: Illustration of different HMM topologies. (a) linear model, (b) left-right model,
(c) Bakis model, (d) ergodic model. (Illustration from [29, p. 128])

state. However, given such a model, there are three basic problems that need to
be solved in order to make HMMs useful to meaningful applications. Those are the
evaluation problem, the decoding problem and the learning problem which will now
be described in more detail. [70]

4.2.1 Evaluation

One essential question when dealing with Hidden Markov Models is how well a cer-
tain pattern, i.e. an observation sequence O = O1, O2, . . . , OT , is described by a given
model λ = (A,B, π). The goal is to find out how likely it is that the model produced
the sequence, P (O|λ). A straightforward approach to computing P (O|λ) is very in-
tuitive and easy. Since an observation is generated by a hidden state, a state sequence
s = q1, q2, . . . , qT of the same length as O is needed, whereas qt is the actual state at
time t. The probability of a corresponding observation sequence must be calculated
along such a fixed sequence.

P (O|s, λ) =
T∏
t=1

bqt(Ot) (4.7)

The probability of an arbitrary state sequence is given by the product of transition
probabilities and the initial state distribution. By defining a0i := πi and q0 := 0 the
equation can be simplified.

P (s|λ) = πq1

T∏
t=2

aqt−1,qt =
T∏
t=1

aqt−1,qt (4.8)

A combination of Equations (4.7) and (4.8) yields the probability that a model λ
produced a given sequence of observables O along a certain state sequence s.

P (O, s|λ) = P (O|s, λ)P (s|λ) =
T∏
t=1

aqt−1,qtbqt(Ot) (4.9)
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Figure 4.2: Illustration of the steps performed to compute forward variables αt(i) with the
forward algorithm. (Illustration from [29, p. 76])

Finally, the overall probability that the given sequence O was produces by the model
λ is given by summing the probabilities of all possible state sequences of length T
through the model.

P (O|λ) =
∑

s

P (O, s|λ) =
∑

s

P (O|s, λ)P (s|λ) (4.10)

Although the calculation of P (O|λ) with Equation (4.10) is obvious, it is virtu-
ally impossible to be done this way in practice. Since there are NT possible state
sequences for which approximately 2T calculations have to be performed the com-
plexity is O(TNT ). However, taking advantage of the Markov property, the forward
algorithm, which is illustrated in Figure 4.2, is a procedure to solve this problem much
more efficiently. Due to the restricted memory of the model, the calculation for the
next time step t + 1 depends only on all possible states at time t which are always
the N states of the model at most. Therefore, it is possible to inductively calculate a
forward variable

αt(i) = P (O1, O2, . . . , Ot, St = si|λ) (4.11)

giving the probability of producing the partial sequence O1, O2, . . . , Ot and being in
state si at time t for a model λ. At first all α1(i) must be initialized for t = 1 using
the initial state distributions π and emission probabilities for each state.

α1(i) = πibi(O1) (4.12)
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To expand a partial sequence with a new observation Ot+1, all possibilities of gener-
ating this sequence and ending in a certain state sj must be taken into account. This
is done by summing all αt(i), because they represent the probability of generating
O1, O2, . . . , Ot, moving to the next step via the transition probabilities for getting
from si to sj, and the probability of observing Ot+1.

αt+1(j) =
∑
i

{αt(i)aij} bj(Ot+1) (4.13)

After calculating all forward variables for 1 ≤ t ≤ T − 1, the algorithm yields N
probabilities αT (i) of generating O with an arbitrary state sequence stopping in state
si. To get the complete probability of producing this sequence, all of the “final”
forward variables simply have to be summed up.

P (O|λ) =
N∑
i=1

αT (i) (4.14)

Alternatively, the probability P (O|λ) can also be used for classification purposes
which is very useful when working with HMMs. If there is more than one HMM, which
is usually the case, classifying the sequence O can be done by finding the maximum
a posteriori probability P (λj|O). With the Bayes formula this probability can be
calculated as

P (λj|O) = max
i

P (O|λi)P (λi)

P (O)
. (4.15)

Since P (O) is constant for one given emission sequence, only the numerator of Equa-
tion (4.15) needs to be calculated. The a priori probability P (λi) is usually disregarded
for reasons of simplicity or because all models are equally likely. Hence, classification
is mostly done using only the probability P (O|λi), which can be efficiently computed
using the described forward algorithm. [29, pp. 70–79][70][91]

4.2.2 Decoding

As shown, the forward algorithm computes P (O|λi) for all possible state sequences.
In some cases, however, it is necessary to find the single state sequence that most
likely produced the observations. Due to the nature of HMMs, it should be obvious
that there is not an exact solution to this problem. Particularly, because there are
several criteria to define an “optimal” sequence of states. Probably the most common
criteria is to maximize the a posteriori probability of producing the observations given
a model by finding the best state sequence s∗.

s∗ = argmax
s

P (s|O, λ) (4.16)

The probability from Equation (4.16) can be rewritten using Bayes rule:

P (s|O, λ) =
P (O, s|λ)

P (O|λ)
(4.17)
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Since P (O|λ) will be constant for one observation sequence, it is enough to regard
the numerator of the right hand side of Equation (4.17) to find the optimal state
sequence:

s∗ = argmax
s

P (s|O, λ) = argmax
s

P (O, s|λ) (4.18)

To solve this problem a procedure called Viterbi algorithm was introduced by A. J.
Viterbi in 1967. This technique works almost as the forward algorithm mentioned in
Section 4.2.1 with the main difference being that the partial probabilities from the
predecessor states are not summed but maximized. After initialization each partial
probability for all states and all t, t = 1, . . . , T − 1, is calculated according to Listing
4.1:

δt+1(j) = max
i
{δt(i)aij}bj(Ot+1) (4.19)

However, this will find only the maximum probability of producing a partial obser-
vation sequence at each time step. In order to find the optimal state sequence that
produced the entire observation sequence, it is necessary to define another variable
ψt(j) that will memorize the state that led to the maximization at each time, i.e. the
optimal predecessor for each δt(j).

ψt(j) = argmax
i

δt−1(i)aij (4.20)

After evaluating the entire observation sequence, the state that maximizes δT (i) marks
the end of the optimal state sequence, denoted as s∗T . Backtracing all of the other
states will extract the optimal path s∗.

s∗t = ψt+1(s
∗
t+1) (4.21)

The optimal path is often referred to as Viterbi path since it is calculated using the
Viterbi algorithm shown in Listing 4.1. [27, pp. 79–82][29, pp. 79–81][30][70]

1 Define: δt(i) = max
q1,q2,...,qt−1

P (O1, O2, . . . , Ot, q1, q2, . . . , qt−1, qt = si|λ)

2 1 . Initializing
3 δ1(i) := πibi(O1)
4 ψ1(i) := 0
5 2 . Recursion
6 for all t = 1, . . . , T − 1 :
7 δt+1 := maxi {δt(i)aijbj(Ot+1)
8 3 . Termination
9 P (O, s∗|λ) = maxi δT (i)

10 s∗T := argmax
i

δT (j)

11 4 . Backtracing of optimal path
12 for all t = T − 1, . . . , 1 :
13 s∗t = ψt+1(s∗t+1)

Listing 4.1: Viterbi algorithm to determine the optimal state sequence. [29]
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4.2.3 Learning

In order to obtain good recognition results, the parameters of a model must be ad-
justed to fit a certain pattern. A training process using observed sequences of the
real phenomenon achieves this optimization. Since no analytical way of solving this
problem is known, iterative procedures are normally used. The most common is the
Baum-Welch algorithm which uses P (O|λ) to optimize the parameters. Using a train-
ing sequence the Baum-Welch algorithm reestimates the parameters of the model λ
so that the new model λ′ produces this sequence with a higher or equal probability.

P (O|λ′) ≥ P (O|λ) (4.22)

The algorithm is based on a variable γt(i) denoting the a-posteriori probability of
being in state si at time t. To efficiently calculate these values, the forward-backward
algorithm is used, an extension of the aforementioned forward algorithm. The forward
variable αt(i) marks the probability of being in state si at time t for a partial observa-
tion sequence O1, O2, . . . , Ot. In a similar manner a backward variable βt(i) is calcu-
lated to yield the probability of producing the remaining sequence Ot+1, Ot+2, . . . , OT

starting in state si for a model λ.

βt(i) = P (Ot+1, Ot+2, . . . , OT |qt = si, λ) (4.23)

The only difference is that the backward algorithm must start at the end. There-
fore, the backward variables are initialized for time T . Obviously, the probability of
producing no further observation at this time is 1, thus

βT (i) = 1 (4.24)

Like the forward variables, every backward variable βt(i) can be calculated accounting
for all successive variables βt+1(j), the output probability at time t and the according
state transition probabilities.

βt(i) =
∑
j

aijbj(Ot+1)βt+1(j) (4.25)

Just as the forward algorithm, this procedure calculates the probability of producing
the observation sequence P (O|λ) by summing all backward variables at time t = 1
regarding the initial state distribution.

P (O|λ) =
N∑
i=1

πibi(O1)β1(i) (4.26)

From the definition it should be obvious that the multiplication of αt(i) and βt(i) is
equal to the probability P (St = si,O|λ). With a combination of both the forward
and the backward algorithm and using Bayes rule, the sought state probability γt(i)
can now be calculated.

γt(i) = P (St = si|O, λ) =
αt(i)βt(i)

P (O|λ)
(4.27)
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Additionally, the probabilities that a transition from si to sj occurred at time t
can be determined similar to Equation (4.27).

γt(i, j) = P (St = si, St+1 = sj|O, λ)

=
P (St = si, St+1 = sj,O|λ)

P (O|λ)
(4.28)

=
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)

With γt(i) and γt(i, j) it is possible to define formulas that reestimate the model
parameters aij, πi and bj(ok).

π′i = P (S1 = si|O, λ) = γ1(i) (4.29)

a′ij =

∑T−1
t=1 P (St = si, St+1 = sj|O, λ)∑T−1

t=1 P (St = si|O, λ)
=

∑T−1
t=1 γt(i, j)∑T−1
t=1 γt(i)

(4.30)

b′j(ok) =

∑
t:Ot=ok

P (St = sj|O, λ)∑T
t=1 P (St = sj|O, λ)

=

∑
t:Ot=ok

γt(j)∑T
t=1 γt(j)

(4.31)

The updated state transition probabilities a′ij are calculated by summing all single
transition possibilities for all possible time steps, namely the expected number of tran-
sitions from state si to state sj. Dividing by the expected total number of transitions
from state si normalizes the new parameter. The improved initial state probabilities
π′i are a special case of the transition probabilities accounting for the expected number
of times the sequence will start at state si. Similarly, the emission probabilities b′j(k)
can be reestimated by dividing the expected number of times being in state sj and
observing ok by the total number of observables generated while being in state sj.
The updated parameters are the result of one iteration of the algorithm. The process
is repeated using λ′ in place of λ until the model satisfactory describes the training
data or until no further improvements are achieved. In most cases the training data
will consist of more than one observation sequence, e.g. several repetitions of a single
gesture. To deal with this occurrence, the presented training algorithm does not have
to be modified. The only difference is that the values for updating the parameters
need to be summed over all sequences. While for the Baum-Welch algorithm all possi-
ble state sequences are considered, it is possible to restrict the learning to the optimal
state sequence using Viterbi training. The criterion for optimization is the probability
of producing the training sequence along the most likely path, P (O, s∗|λ). This pro-
cess is faster and easier to implement, but requires more training sequences than the
Baum-Welch algorithm which extracts more information from the training data. As
a result, a combination of both algorithms is used in practice. The Viterbi training is
used to prepare a model for a subsequent training by the Baum-Welch algorithm. Due
to the preparation phase, the Baum-Welch algorithm will take less time to calculate
an adequate model. Another common technique is the segmental k-means algorithm
[40] which uses the same probability as the Viterbi training, as well as an algorithm
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for vector quantization6 to reestimate parameters of a mixed density model. With a
few alterations this procedure becomes the only formal algorithm to determine the
initial parameters of HMMs. For models with mixed densities, this algorithm also
converges faster than the Baum-Welch algorithm. [27, pp. 82–85][29, pp. 83–96][70]

4.3 Computational Consideration

Apart from practical problems such as parameter initialization, the implementation of
HMM theory causes considerable issues. These need to be dealt with if an implemen-
tation is to be of high quality. When dealing with HMMs, many operations require
handling probability values which quickly approach zero, especially when comput-
ing the forward and backward variables. As a result the risk of numerical inaccuracy
arises. A straightforward method to avoid underflow is the introduction of scaling fac-
tors that can usually be canceled out easily. The main problem with scaling methods
is that often they are error-prone and laborious.

An alternative and more common procedure is to use a logarithmic representation
of small probability values. Thus, the original value p is usually transformed as follows:

p̃ = − logb p (4.32)

The accuracy of current floating point formats is sufficient for the resulting range.
The choice of the base of the logarithm has no significant influence on the precision
of the values. However in practice, the Euler’s number e is used predominantly as
the base, since virtually every standard library includes efficient implementations of
the natural logarithm and its inverse function ex. Furthermore, using the natural
logarithm simplifies evaluation of the normal distribution density. The only drawback
with this representation is the issue of adding two probability values, as it might
require to delogarithmize and add the values and then take the logarithm again.
However, there are ways to minimize the complexity of adding two numbers (see for
example [29, p. 121]).

To increase efficiency of the Baum-Welch training, it is appropriate to apply
thresholding. The reestimation results depend on the γ values only. Comparatively
small γ’s will have only little influence on the summations and could be disregarded.
Since the value of a γ is mainly determined by the corresponding forward and backward
variables they can be set to zero if they are too small compared to others. This will
obviously save operations and thus reduce the computational load. Unfortunately, a
fitting threshold must be selected empirically since no analytical solution exists. Yet
the importance of choosing an adequate threshold must not be underestimated since
it heavily influences the quality of the outcome.

A technique similar to thresholding is flooring. Besides very small probability
values, it is possible that an event is unobservable, i.e. the probability is zero. Using
the mentioned logarithmic representation, it would result in a value of infinity or

6In general the k-means algorithm is used for reasons of efficiency.
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require mapping of the value onto the largest possible float, possibly causing overflow.
A heuristically determined maximum p̃max prevents the occurrence of this problem.
In terms of probabilities it means that values do not fall below a certain lower bound
pmin which is the reason for the name of this method.

p̃max = − ln pmin (4.33)

Additionally, flooring the emission probabilities assures that affected states will still
be regarded during the reestimation process. It will also circumvent the immediate ex-
clusion of states with low probability values while calculating the best state sequence.
[29, pp. 119–125][70][91]

33



4 Hidden Markov Models

34



5 Gesture Control in the VRGeo
Demonstrator

The goal of the work presented in this thesis was to develop a gesture recognition
and control system. To achieve it, several ideas presented in Chapter 2 have been
implemented in the system to different degrees. Although the field of OCR seemed
very promising for the given task, most techniques in this field work on images of the
symbols to be recognized. Converting the digital data to a pixel-like representation
would have been an unnecessary effort and was disregarded. However, due to the
input method, the idea of Palm’s unistroke alphabet [8, 54] was adapted for the
recognition system. The usage of HMMs was obvious since so many other systems
employ them for the purpose of recognition. The idea for the vector quantization
which is described in Section 5.4.3 was derived from the idea by Elliman and Connor
[26] to subdivide a bounding sphere of a character to calculate a token sequence. The
problem of time variance mentioned by Wilson and Bobick [88] was solved by sampling
only equidistant points in three-dimensional space. Calculating the center of mass for
all sampled points as presented in [26] and [78], also became part of the preprocessing
step. The important feature of providing visual feedback to a user mentioned by
Stark and Kohler [78] was also integrated into the final application. Many ideas found
during research were not incorporated for various reasons. Some seemed unnecessary
or too complex while others were estimated as too time consuming. However, there
are various promising ideas that might be integrated at some point in the future as
discussed in Chapter 7.

5.1 VRGeo Demonstrator

The recognition system developed for this thesis was meant to be included in the
VRGeo Demonstrator. The demonstrator is an immersive VR prototype software to
explore seismic data. It continues to be developed at the Fraunhofer IAIS for the
VRGeo Consortium. Members of the consortium are companies from the oil and
gas industry as well as their suppliers of software and related hardware. Their main
interest is to utilize new VR technologies for their field of work. At the two annual
meetings of the consortium, the demonstrator and new features are presented to the
representatives of the members. During this session the participants (experts in the
field of VR, geology and geophysics among others) are able to test the application
themselves and discuss their thoughts and opinions. Afterwards the consortium will
present its feedback on which the research agenda for the following term will be based.
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Figure 5.1: The VRGeo Demonstrator. The image shows a workspace (grey cube) contain-
ing a volume lens (upper right corner), a volume slice (lower left corner) and
an alpha shape (center). Also visible are the 3D menu as well as a performed L
gesture.

This also determines which technology will be kept as part of the demonstrator and
which will not.

The VRGeo Demonstrator in the current version is primarily designed for the
TwoView display (see Section 3.1.1). Two users with 3D shutter glasses and wireless
6-DOF input devices are able to work collaboratively. The glasses and input devices
are tracked with an array of 4 A.R.T. infrared tracking cameras mounted at the four
corners of the projection screen. With the current set up 15 individual targets can
be tracked simultaneously at a frame rate of 60 Hz. A scene in the application can
host workspaces into which a seismic volume data set can be loaded. Each workspace
can also hold several objects: volume lenses, volume slices and alpha shapes (see Fig-
ure 5.1). Volume lenses are a cubic cutout of the volume data. A color palette is
applied using 3D textures to improve the volumetric visualization. A volume slice
displays the volume data loaded into the workspace along a two-dimensional intersec-
tion. Alpha shapes are geometric objects that do not have to be convex or connected.
They are used to construct arbitrary shapes to model regions of uncertainty into the
data. Interaction with the scene is done using a pick-ray that is emanating from the
interaction device and with the help of a 3D pop-up menu [22].

The demonstrator was designed using the AVANGO VR/AR framework [81]. It
had to be completely rewritten due to a conversion from AVANGO to AVANGONG
[47] (see Section 5.3). Consequently, it is implemented using the C++ programming
language and the Python scripting language. For the TwoView display, the demon-
strator runs on a HP xw9400 workstation with two Dual-Core AMD Opteron 2218
processors, two NVIDIA Quadro FX 5600 and one NVIDIA Quadro G-Sync 2 graphics
card hosting a CentOS 5.2 Linux.

36



5.1 VRGeo Demonstrator

(a) (b) (c)

Figure 5.2: Example of user feedback. (a) The intended action was to create a new volume
lens. The gesture was recognized successfully and a the workspace could be
referenced indicated by the green trail. (b) The intention to create a new volume
slice failed as the attempted S could not be recognized. (c) The symbol was
recognized correctly but the referenced object (a workspace) cannot be scaled.

Since the recognition system was to be included in the current version of the
VRGeo Demonstrator, several data and tools could be reused. The most important
advantage was the possibility to use the tracking data of the installed A.R.T. track-
ing cameras. These cameras provide three-dimensional coordinates of a target with
submillimeter precision at a rate of 60 Hz. This highly accurate data was the starting
point for all further considerations presented in this chapter. Since the input device
including the tracking target is used for all interactions with the Demonstrator it had
to be made clear when it would be used for the purpose of gesture input. To keep
things as simple as possible, a user needs to press a certain button on the device to
signal the beginning of the gesture and then perform the gesture. Releasing the but-
ton marks the end of the gesture. While the button is pressed the application takes
advantage of the results of the resampling process explained in Section 5.4.1. The trail
of the gesture is visualized to a user by rendering gray spheres at the position of sam-
pled gesture points while the gesture is drawn. This way a user immediately sees what
the input looks like. Additionally, after the recognition process, the trail of spheres is
color coded to visualize the result of the process. If no gesture was recognized by the
system, the spheres turn red. If a gesture was recognized, the corresponding action is
identified and a ray is projected through the center of the gesture in the direction the
input device points to. The action is then applied to the first object in the scene that
is intersected by the ray. If the ray does not intersect with any object or if the action
does not apply to the object found, the spheres turn yellow. Otherwise the spheres
turn green to signal the success of the operation as shown in Figure 5.2. This part of
the application is very important, because it gives a user the opportunity to identify
errors more easily if the input did not yield the expected result. This assures a quick
adaptation to the system and therefore also increases user acceptance. Reusing the
available devices and data also allows a fluent integration of the gesture control in
the existing workflow. The most important tasks of the demonstrator were identified
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Create workspace Create volume lens Create volume slice

Scale up Scale down Delete

Figure 5.3: Gesture symbols used in the VRGeo Demonstrator.

intuitively by members of the project team. They are: scaling up/down, creating a
new workspace, creating a new volume lens, creating a new volume slice and delet-
ing. The symbols assigned to these actions were chosen so as to provide a metaphor
that is plausible and simple to memorize. The symbols in the current version of the
demonstrator are shown in Figure 5.3. The association of an x with the process of
deleting an object seems to be widely accepted, yet it implied the problem of different
drawing styles when using unistrokes. To prevent unnecessary stalling of the project’s
progress, two versions were defined that seemed feasible. To reiterate, since the goal
was not to devise a system that is ready to use out of the box and optimized for
usability, less thought was put into issues such as proper definition of the gestures
and identification of the most frequently performed tasks.

5.2 Selection of Tools

This section describes which tools were chosen to implement the system and the reason
for choosing them. The most important step after understanding the fundamentals of
HMMs was to find a suitable library for Hidden Markov Models. It was clear that it
would be impossible to implement the theory independently within the scope of this
thesis. Unfortunately, the selection of available libraries is fairly small.

After a guest lecture at the Bonn-Rhein-Sieg University of Applied Sciences, Dr.
Volker Krüger of the Aalborg University recommended the Hidden Markov Model
Toolbox for MATLAB [62] as an excellent modeling tool for HMMs. The toolbox
supports every major operation on HMMs. However, as a result of the project’s
specifications, it would be difficult to implement the system within a MATLAB envi-
ronment. Therefore, the utilization of this Toolbox was deemed impossible.

The Hidden Markov Toolkit (HTK) by the Cambridge University Engineering
Department (CUED) [15] is basically a set of tools for building and manipulating
Hidden Markov Models. It is applied but not restricted to speech recognition and
it is widely used. However, the recognition system had to be written in C/C++
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or Python since AVANGONG (see Section 3.4) is based on these languages. The
HTK also includes source and header files, but it does not provide an API to ensure
convenient usage.

The Probabilistic Networks Library (PNL) [38] by Intel includes a large variety of
algorithms for computational inference and learning. As a part of Intel’s Open Source
Libraries, like the well-known Open Source Computer Vision Library (openCV), it is
meant to provide a freely accessible software package overcoming the disadvantages of
other existing packages. The scale of the package made this library very interesting for
the implementation of the recognition system. The multitude of algorithms made the
package appear very complex, especially since Hidden Markov Models were just a very
small subset. However, this was not a reason for disregarding it. Several attempts to
compile the library within the same testing environment of the VRGeo Demonstrator
failed. Investing more time might have solved the problem, but because of a very
tight schedule the decision was made to test another alternative first.

When searching for an HMM library on the Internet the first result is the General
Hidden Markov Model library (GHMM) [1] developed by the Algorithmics group at
the Max Planck Institute for Molecular Genetics in Berlin. As the name suggests,
other than the PNL, this library is specialized on HMMs only. Primarily, this sim-
plified handling of the API. The library is written in C, including bindings for the
Python scripting language, making it ideally suited for the project. Also included
in the package are several examples dealing with typical problems of HMM applica-
tions. After writing a few examples using the Python bindings, it was obvious that
the incredible simplicity of operations – such as building, saving, loading and training
HMMs – would be a great advantage for the implementation process. Frequent de-
velopment activities and online discussions indicated a very active community. This
promised good support and further encouraged the use of this library. After reviewing
the findings of the research for a suitable HMM software package, the GHMM library
was deemed most appropriate. The most recent version, ghmm 0.8 beta 1, was used
for the implementation.

Relatively early in the project, it was agreed that the data used for recognition
should preferably be reduced in dimensionality. The chosen solution was to perform
a principal components analysis (see Section 5.4.2). Fortunately, finding a library to
perform this step was unnecessary. Another project within the VRGeo project deals
with the construction of alpha shapes with the help of the Computational Geometry
Algorithms Library (CGAL) [17]. This library is also able to perform the principal
components analysis and thus could be used for the recognition system as well.

5.3 AVANGO NG

The framework used for this thesis is called AVANGOR©NG [47] which is the next
generation version of the open source VR/AR framework AVANGOR© [81] developed
at the Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS.
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5 Gesture Control in the VRGeo Demonstrator

This section will focus on the main aspects of this framework and mention the major
improvements in the next generation version.

The most important characteristics of AVANGONG are the scene graph, a field
concept similar to Open Inventor [86] and a scripting interface that allows rapid
prototyping. Other components are a network layer for application distribution, a
flexible display setup with abstraction of output devices and a device daemon to con-
nect input devices and tracking systems. AVANGO was based on the proprietary
OpenGL Performer scene graph toolkit for scene representation and management.
For AVANGONG this scene graph library was replaced by OpenSceneGraph [65],
since the development of Performer has stalled. Additionally, the dependence on a
commercial library might have caused potential users to disregard AVANGO for their
work. Despite this change, the scene graph concept stayed the same. The scene is
described by a hierarchy of nodes called the scene graph. Nodes can hold a variety
of properties, e.g. geometry, transformations, grouping information, lights or mate-
rial properties. In AVANGONG these nodes are called field container and contain a
collection of arbitrary fields which in turn encapsulate the states of AVANGONG ob-
jects. Both fields and field containers support a streaming interface and thus network
distribution. This allows running AVANGONG applications on distant machines or
in cluster systems. To propagate events within the framework, fields of the same type
can be connected. Using these field connections creates an additional data-flow graph
which is orthogonal to the scene graph and allows logical relations between nodes that
could not be expressed with the scene graph alone. Once the value of a field changes,
all connected fields will be updated before the next frame is rendered.

The majority of AVANGONG is implemented in C++, but it also offers a script-
ing interface. In AVANGO Scheme was used as the scripting language. In the next
generation, Python replaced Scheme, mainly because it is well-known and more widely
used. Whole applications can be implemented using the scripting interface which al-
lows rapid prototyping. One advantage, besides the time issue, is that a class imple-
mented in Python does not behave any different from a class implemented in C++.
Thus, a scripted field container can easily be reimplemented in C++ if necessary.
Pythons native support of object-oriented programming also simplifies application
development.

Besides replacing two major dependencies, the framework as a whole was refac-
tored to reduce inter-module dependencies and overcome flaws discovered in AVANGO.
The core of AVANGONG was decoupled from the rest of the framework allowing the
encapsulation of the scene graph and an improved component model. Sometimes it is
necessary to add additional information to a node to perform certain operations such
as dragging an object. For the drag operation, the application needs to determine if
a selected object is draggable by querying a corresponding field. These attributes are
called external fields since they are not used by the node itself. Adding new external
fields in AVANGO required changing the base classes because extra information was
hardwired into them. The new model allows adding fields at run-time and then use
them as external fields, thereby increasing flexibility. As another example, a large
number of special field containers had to be defined previously to ensure correct eval-
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Figure 5.4: 2D example of the thresholding process to achieve equidistant sampling.
(a) An exemplified input of too high precision. (b) The input after
resampling.

uation order. As a result of redefining the evaluation order, special classes are no
longer necessary. These are just a few improvements of AVANGONG. Furthermore,
the framework is under constant development as it is used for several current research
projects at the Fraunhofer IAIS.

5.4 Preprocessing

As mentioned in the previous chapter, the decision was to use discrete Hidden Markov
Models. Therefore, the target data has to be preprocessed to be appropriate for the
training and recognition process. The individual steps are illustrated in this section.

5.4.1 Resampling

At first, the data is resampled to ensure time invariance. As mentioned before the
tracking system used for the VRGeo Demonstrator delivers 60 sample vectors per
second regardless of user behavior. This creates two major problems that had to be
considered. First of all, because of the sampling rate and the highly precise tracking,
even a user with a fairly steady hand will cause a jitter in the motion of a gesture.
Therefore the variance of a repeated motion is increased unintentionally complicating
the recognition. Secondly, the representation of a gesture should only depend on the
order of motion trajectories, but be somewhat independent of time. This means the
recognition of a gesture should not be affected by the time it takes to perform it. For
example, a pause introduced at the beginning or the end of the gesture should not
affect the result. Both problems were solved by a thresholding process. The incoming
stream of 3D points is stored only if the distance of the current point to the last valid
one exceeds a certain threshold. This step acts as a sort of low-pass filter eliminating
high frequencies in the motion trajectories. At the same time it ensures an equidistant
sampling. It is performed as soon as the gesture button on the input device is pressed
and throughout the time it is held down. In Figure 5.4 a 2D example is illustrated
to show the effect of this processing step. The number of sampled points per gesture
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can now only vary with the size of the gesture. This issue was disregarded, however,
because initial experiments in which gestures were resampled to have the same number
of points showed no significant improvements.

5.4.2 Dimensional Reduction

Once the gesture button is released, i.e. the gesture is complete, the result of the first
preprocessing step is a list of coordinates in three-dimensional space. However, it was
determined that the gestures to be recognized would be symbols such as characters or
simple geometric shapes, e.g. a circle, L or W. Considering the nature of such symbols
it should be obvious to the reader that they are only two-dimensional. Accordingly,
it was a step to reduce the dimensionality of the resulting set of 3D points to two
dimensions. The most simple solution would have been to completely disregard one
axis, presumably the depth axis. Usually this will be the z-axis of a Cartesian coor-
dinate system. If a user performs the gesture in a manner such that each sampled
point lies within a single xy-plane, the mentioned technique will always capture the
exact gesture. If a user only deviates slightly from this constraint, it will probably
still yield fairly good results. However, for this application a user will work within
in a virtual environment. Therefore, no assumption can be made about the direction
in which a user points the input device while gesturing. This means that the depth
axis of the gesture is not necessarily consistent with the depth axis of the application.
Accordingly, a way had to be found to determine the best fitting plane in 3D space
in which the gesture was performed.

The most intuitive was to run a principal components analysis (PCA). The PCA
is usually used in data analysis to reduce complexity of multivariate data sets (see for
example [34] or [36]). In most cases, the data is reduced to 2D for scatter plot visual-
ization or to 1D for ranking. Assume the original data is a set of statistical variables
X1, X2, . . . , Xn which are normally correlated with each other. For instance these
could be test scores of students in different subjects. The idea is to decompose the
data to an orthogonal set of linear combinations of all characteristics called principal
components. Since the linear combinations are orthogonal, the resulting components
will be uncorrelated. The combinations can be found by eigenvalue decomposition
of the empirical n × n variance-covariance matrix of the data. It can be shown that
the eigenvector corresponding to the greatest eigenvalue is the linear combination
accounting for the greatest variance in the whole data set. This means that if a is
this eigenvector, then

a1x1 + a2x2 + · · ·+ anxn (5.1)

is the first principal component that best describes the data set. With the second
largest eigenvalue, the second principal component can be found which describes the
second largest variance. Continuing in this manner will lead to n principal compo-
nents which all together completely describe the data. However, in most cases the
components less important for the total variance are neglected. How many principal
components are necessary to describe the data with satisfactory precision depends on
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Figure 5.5: An example gesture in 3D space (a) is moved (1) and rotated (2 and 3) to be centered
at the origin and aligned with the xy-plane (b) using the best fitting plane and the
centroid calculated by the CGAL library. The z-coordinate of the transformed points
is dropped to project them onto the xy-plane (c) which yields a two-dimensional set
of sample points. The original position of the transformed points is indicated by the
dotted circles.

the data and the used decision criterion. Common criteria are the scree plot, Kaisers’s
or Jolliffe’s criterion (see for example [34, pp. 120–121]). For this thesis none of the
criteria were important since the goal of the PCA was clear already. Unfortunately,
the CGAL library used for the project does not return the linear combinations. How-
ever, it implements PCA to, among other things, determine the best fitting 3D plane
and the centroid to a set of three-dimensional points. This result was ideal since find-
ing the best fitting plane was the original intention of the dimensional reduction. For
the recognition system, the centroid is used to center the gesture at the origin of 3D
space. Then the sample points of the gesture are projected onto the plane calculated
by the CGAL library after the plane was rotated so that it equals the xy-plane. The
entire process is illustrated in Figure 5.5. [34, pp. 107–129][36]

5.4.3 Discretization

Now the sample points are two-dimensional but the coordinates are still continuous
values. In order to pass the data to a discrete Hidden Markov Model in the form of
an observation sequence the values need to be discrete. At the same time, the 2D
points must be parametrized in such a way that they represent a gesture adequately.
As presented in Chapter 2, several possibilities can be found in the literature. The
approach taken here is a simple form of vector quantization. First, the position vectors
of each sample are used to generate a trajectory, i.e. a chain of direction vectors
(illustrated in Figure 5.6 (b)). Then the angle between each direction vector and the
x-axis is used to determine a number between 1 and 16. This number represents an
index into an manually created codebook of prototype vectors. Thus each direction
vector can be represented by an integer value. The whole gesture is represented by a
list of these values and can now be used to train a Hidden Markov Model or to query
one for classification.
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Figure 5.6: Illustration of the vector quantization process. (a) A set of 2D sample points. (b)
Trajectory of direction vectors derived from the sample points. (c) Direction vectors
used for quantization. The mapping of directions from the gesture to the quantization
vectors is indicated. (d) The final observation sequence is a list of numbers that corre-
spond to 1 of 16 directions. For this example the list would be: 14, 14, 14, 14, 4, 4, 1,
14, 14, 4, 4, 4, 3, 1.

5.5 HMM Initialization

This section describes how the structure and parameters of the Hidden Markov Mod-
els for the recognition system were determined. A simple decision was the overall
structure of the recognition system. The approach to use one model to represent one
gesture could be found in many elaborations on gesture recognition systems and was
therefore adopted for this project. Despite a multitude of publications on HMMs, the
rest of this part of work was one of the most challenging. Most of these publications
describe the theory of HMMs in adequate depth and the applied preprocessing in
detail. However, virtually every work conceals details about the choice of parame-
ters used for the HMMs. Though HMMs are widely used, it appears that in large
part finding the “right” number of hidden states or symbols is still guess work. Fink
mentions that expert knowledge of the particular domain is needed to define a model
structure [29, p. 81]. This means that someone with inside knowledge of the process
that is to be modeled with HMMs, specifies parameters like number of states or the
distribution of the emissions. This implies, however, that the expert has knowledge of
his field of work and at the same time is familiar with the concept of Hidden Markov
Models. Euler is a little more helpful by noting that the quality of the model can be
improved by adjusting the number of states to the number of sounds in a word when
dealing with speech recognition [27, p. 100]. In other papers, models with a number
of states between 1 and 20 can be found. However reasons for choosing those numbers
do not appear.

In parallel, a reasonable distribution of the emission symbols had to be deter-
mined, since information on this topic could not be found either. The first idea was
to instinctively choose a number of states and assume a uniform distribution for all
emissions, state initials and state transitions. The final models were to be shaped by
the training process. Trials with 5 and 10 states respectively were not encouraging.
Further research revealed that several systems use specialized models, i.e. each gesture
is analyzed and the corresponding model is defined manually according to this anal-
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Figure 5.7: This figure displays a simplified structure of the HMM prototype used for the gesture
recognition system with 7 instead of 16 output symbols. All state transitions of the
ergodic model have the equal probability of 1

number of states . Each state is equally
likely to be the initial state with the same probability used for the state transitions.
The distribution of the emissions is indicated for state 3 showing the Gaussian-like
distribution.

ysis. Unfortunately, because of the concept of the recognition system for the VRGeo
Demonstrator, this plausible approach could not be used. From the beginning it was
clear that the intention was to give a user the chance to extend the system by adding
more gestures. This would be impossible if a user needed to tinker with the parameter
settings for each new model. The general approach had to be retained, which meant
that all models had to be equal before the training. Some sort of prototype HMM
had to be defined which would specify automatically based on the training.

Further experiments and research did not yield any satisfactory results. The
main reason was the abstract correlation between the number of observables and the
number of states. Usually the number of observables is much higher than the number
of states. From this it is hard to understand the coherence between state transition
probabilities and emission probability distributions. In other words, even though it is
hidden, details of the internal process of a model must be known to the one defining
it. After attempts to find a satisfactory solution to this problem were unsuccessful,
a different approach was chosen. Instead of trying to find the relation between the
observable and the hidden part of the model, the hidden part was disclosed. To achieve
this, each state was defined to prefer one possible output symbol. This means the
prototype model includes as many states as observables. Since 16 different direction
vectors were chosen as possible symbols, the initial model is composed of 16 states.
To account for the variability in motion of a gesture, the distribution for the emissions
was modeled to represent a Gaussian-like distribution. Therefore, each state si of the
prototype model prefers vector i with a probability of 60%. The directly preceding or
following vectors ((i± 1) mod 16 + 1) are emitted with a probability of 12.5%, i− 2
or i + 2 with a probability of 5%. The probability of emitting one of the remaining
vectors is 5%. For clarification, output probabilities for state s3 of a simplified model
are illustrated in Figure 5.7.
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In speech recognition it is common to use left-right or Bakis models (see Section
4.1) because they effectively model signals with temporal order. The same idea applies
to gesture recognition. However, to effectively use these topologies, the general path
through the model must be known in advance, including its start and final state.
In this case it would require knowledge about the general movement of the gesture
which would have been used for defining specialized HMMs. However, because of the
general approach explained previously, this was ruled impossible. Hence, the generic
ergodic topology was used as seen in Figure 5.7. Since the direction at the beginning
of the gesture is totally arbitrary, any of the 16 states could be the first. Therefore,
the initial state probabilities were uniformly distributed. The same applies to the
transition probabilities. Both would then be adapted to a certain gesture by the
training process. After collecting all ideas about the parameters and the topology,
it was possible to construct a prototype HMM which would serve as a basis for all
gesture models.
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So far this thesis has covered the necessary theories and their application to practice.
The result is a system that is capable of transforming raw tracking data to a sequence
of discrete observation symbols. Such sequences could be used to train the described
HMM prototype. In this chapter the concepts and processes involved in the training
phase will be covered before discussing the results obtained while testing the system.
However, it is worth mentioning that the evaluation presented here is not a thorough
statistical analysis but rather a straightforward test using a set of prerecorded training
samples. Besides presenting the test results, the introduction of an additional noise
model is explained alongside its positive and negative consequences.

6.1 Training the Hidden Markov Models

The result of the ideas presented in the previous chapter was an HMM prototype. This
prototype was now to be trained to represent a certain gesture. Similar to the number
of states, information about the number of training samples differ considerably in the
relevant literature. Quantities range from just two samples per gesture [42] to 100
[91]. As a result of extensive testing during development, a direct proportionality
between the number of samples used for training and the recognition quality was
observed, concurring with the results found in [57]. Consequently, for the gesture
recognition system presented here 130 samples of each gesture were recorded from
4 different users, whereas one sample is one recorded repetition of a gesture. Of
those 130 samples, 100 were used for training and the remaining 30 for testing. The
recognition system was presented at the June meeting of the VRGeo Consortium
to their members. Since no training module for customization had been planned,
the system had to be user independent. Therefore, it was necessary to use samples
of different users, because too many training sets of a single user would result in
overfitting of the models. In that case the system would recognize gestures of users
other than the one who trained the model with very low probability. The recording of
samples took place within an environment similar to the VRGeo Demonstrator setup
using the same input device and display system. This was important so as to avoid
introducing unnecessary complications to the process due to unknown factors.

The training was performed off-line, i.e. without user interaction and before
integration into the VRGeo Demonstrator. For each of the seven gestures, the General
Hidden Markov Model library was used to create a prototype described in Section
5.5. Then the Baum-Welch algorithm was applied to reestimate the parameters of the
prototype using the set of thirty preprocessed training sequences for each gesture. To
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store the resulting model for later reference the GHMM library provides a function
that is capable of writing all important parameters and properties to an XML type
format which was then saved to the hard drive. A text file serving as a flat database
was updated with information on the currently trained gesture, namely a reference
name and the name of the model file. The results are seven XML files representing
one HMM each and a database with seven entries. In this way the database can be
modified easily with any text editor. Therefore, adding new gestures is very simple
and excluding them from the system only requires the deletion of the corresponding
two lines in the text file. Another advantage is that the model files themselves do not
have to be deleted, so if a model is to be used again at a later time, no training is
necessary. The name of the file and model just have to be reentered into the database.
Although the construction of the database was performed off-line, it is implemented
in a way that it can easily be reused for an on-line training module later on.

For recognition, the database and the model files were made accessible to the
recognition module of the demonstrator. The module uses the database to create
HMMs from the provided model files with the available GHMM library functions.
After the user finished the gesture and the data preprocessed according to the pro-
cedures described in the previous chapter, the model which most likely produced the
current emission sequence is determined by finding the maximum likelihood value.
The GHMM uses the forward algorithm (see Section 4.2.1) to calculate the loga-
rithmized probability logP (O|λ) for each model. This representation is due to the
computational issues mentioned in Section 4.3. The results are compared and the
model which maximizes the probability is chosen to describe the currently observed
gesture. Unlike the negative logarithmic scale introduced before, the results are not
negated by the GHMM library. If the probability were negated, of course, the lowest
result would have to be considered. Depending on many factors, e.g. sloppiness, type
or especially size of the gesture and missing references it was impossible to deter-
mine at which point the calculated probability would legitimatize the recognition of
a gesture. It is noticeable from the definition of the forward algorithm that the re-
sulting probability will decrease monotonously with increasing size of the observation
sequence. However, as mentioned in the previous chapter, resampling the sequences
to achieve a constant length of n samples did not seem to attenuate the problem
much, making it hard to find an adequate threshold. Actually, a sort of thresholding
is already performed by the GHMM library. Using the Python bindings, probabilities
that are too small or zero, i.e. non-observable, are returned as a value of “−infinity”.
Thus, setting a low enough threshold will only assure that none of the trained gestures
was performed if the threshold was not exceeded after calculating the probabilities
for all models, i.e. if every model returned “−inf ”. As soon as this is not the case,
the choice of an arbitrary threshold becomes problematic. If it is too high, a correct
gesture might be rejected. If it is too low, a wrong gesture might be recognized. The
possibility of performing experiments to empirically determine a threshold was dis-
missed for two reasons. Firstly, the time available before the VRGeo June meeting
was limited. Secondly, since the recognition system should eventually contain a train-
ing module for customized gestures, such an experiment would have made not much
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sense. The threshold determined as a result for the current seven gestures might be
totally worthless for a different set. As a consequence, an eighth model was added
to the database. This model is simply the prototype model without training, which
means all states are equally likely to be the initial state and all transition probabilities
are identical. It describes a very general case, which was the intention of finding a
prototype model. The idea was to use it to filter any background noise which does
not qualify as a gesture, namely every arbitrary movement which is not one of the
trained gestures.

6.2 Evaluation of the Recognition System

To test the performance and robustness of the implemented recognition system, the
total number of 210 raw test samples were passed to the recognition module. The
number of correct and false classifications were counted for each gesture to calculate
a recognition rate and an error rate.

recognition rate =
number of correct classifications

total number of test samples
· 100 % (6.1)

error rate =
number of incorrect classifications

total number of test samples
· 100 % (6.2)

If a gesture was classified as noise, it was neither recognized correctly nor incorrectly.
To investigate the proportional effect of recognition rate and the number of training
samples, the system was retrained with an increasing number of samples starting at 20
and ending at 100. This was done in five steps and for each step the testing procedure
was repeated. To ensure a flexible and efficient testing process, an additional module
was implemented which automatizes the procedure of retraining the existing models.
The recognition rate is particularly important when judging the quality of the devised
system. A study on handwriting recognition by Mary LaLomia [48] identified a rate of
97% as acceptable. Since the process of handwriting is somewhat similar to the gesture
input for this recognition system, similar rates will presumably have to be achieved to
ensure user acceptance. Others suggest recognition software should have recognition
rates of nearly 100% to not be discarded by a user [42, 54]. As mentioned before, the
goal of this thesis was to create a proof of concept to show that gesture control can
be introduced successfully to the VRGeo prototype software. Accordingly, achieving
recognition rates of 97% or higher was not expected. Suprisingly, analyzing the results
of the system showed very good recognition rates, up to 98.57% when training the
models with the highest number of training samples available. As seen in Figure 6.1,
the rates were relatively high for any tested number of samples. The monotonous
increase of rates also show that the proportional relation between recognition rate
and number of training samples holds true for the implemented system. Thus, the
remaining 30 samples used for testing could be incorporated into the training to
further improve the final system.
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Figure 6.1: This plot illustrates the percentage of correctly recognized gestures of a total
of 210 test samples of the trained gestures with (red) and without (black) the
additional noise model.

Even more surprising was the astonishing 0% error rate for all five configurations.
Everytime a gesture was not recognized correctly it was classified as noise. While this
result approved the usage of the noise model, it also implied the question whether
the additional model worked too well by intercepting too many movements. To trace
this thought, the same experiment was repeated excluding the noise model from the
recognition process, i.e. as soon as at least one model does not return “−inf ” a gesture
will be recognized. Indeed, the obtained results indicate that in a few cases the noise
model falsely intercepts a gesture that would otherwise have been classified correctly
by one of the trained models. In the experiments, this led to slightly higher recognition
rates when training with 20, 40 and 80 samples. However, the main purpose of the
noise model was to solve the thresholding problem and prevent the recognition of
wrong gestures. Hence, two more experiments were conducted to test whether the
addition of the noise model was justifiable. For this purpose a set of seven new
gestures were defined as shown in Figure 6.2. Those new symbols are similar to the
ones that were used to train the HMMs. They were designed so that a user accidentally
gesturing these “wrong” symbols while performing a task in the demonstrator would
easily be imaginable. Since rotational invariance is not yet a feature of the system,
it was obvious to choose the circles and start at the bottom instead of starting at
the top. Due to the similarity of the symbols to the Roman letters we use in our
everyday life, it is plausible that a user could try to draw a symbol in cursive instead
of using the printed version. The L and W symbols are ideal candidates for such
a mix up. Similarly, those two symbols were used to introduce a case where some
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Figure 6.2: Symbols that were used to test the effects of the additional HMM meant to filter
background noise. The symbols were chosen because they are similar to the original
gestures and could easily be used by the user on accident.

pre-movement of the gesture accidentally became part of the input. Lastly, a sloppy
version of an S was also considered. The X symbols were not considered because
they were recognized to such a degree that it was virtually impossible to gesture an
X-like symbol that would be misclassified. The similar gestures were recorded and
passed to the module for recognition. Again a gesture was not classified at all, only
if all models returned “−inf ”. The results displayed in Figure 6.3 show that just as
in the case of the recognition rate, the error rate would increase with the number of
training samples. After training the models with only 20 training samples, the error
rate was only 6.67%, because most of the time no gesture was recognized. However,
when using 100 training samples as much as 145 of 210 test samples were misclassified.
Compared to that, the maximum error rate was only 4.28% for 40 training samples
while allowing the classification as noise. With all 100 training samples, the error rate
was 2.38% which is 66.67% lower than without the noise model. As a conclusion, the
advantage of significantly reducing the misclassification of “wrong” gestures with the
noise model clearly surpasses the effect of rejecting slightly more correct gestures.

Despite the promising results of the experiments, one problem could not be solved
to this date. Due to the structure of the HMMs and the defined gestures used, the
system also recognizes partial gestures. Partial gesture input could be the result of
a user deciding to discontinue a gesture after starting it or it could be an arbitrary
motion that was recorded on accident. After the training process, the initial state
probabilities corresponding to the first general direction of a gesture will be very high,
all others will be quite low or even zero. The trained model will also have high state
transition probabilities from one state to itself and to the one that corresponds to the
following direction. Obviously, the transition probability for the state corresponding
to the last direction will only be high for a transition to itself. Now, as mentioned
before, the probability calculated by the forward algorithm will decrease proportional
to the length of the observation sequence. Therefore, any motion trajectory that starts
out similar to one of the trained gestures will always result in a higher likelihood than
gesturing the entire symbol. Another problem is that the transitions from one state to
itself will usually be the highest, especially in the case of symbols containing straight
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6 Training and Results

Figure 6.3: This image shows the significant differences in classification errors when utilizing
the additional noise model (red) and when excluding it (black) while trying to
recognize the set of “wrong” gestures.

lines, to ensure that the model stays in that state long enough. If the gestures are
resampled to be of a constant size, gestures that consist of only one direction existent in
a trained symbol will still yield high results. These cases should ideally be intercepted
by the noise model. However, since the obtained result of such partial gestures will
be higher than the one from a whole gesture, it will usually also be higher than the
likelihood calculated from the noise model. Every attempt to eliminate this problem
either failed or put constraints on the system that erased the general structure. For
this reason, this issue remains to be dealt with later on (see Chapter 7).

The gesture recognition system was presented as part of the VRGeo Demonstrator
to the participants of the 2008 VRGeo June meeting. Everybody was given the chance
to test the new feature themselves. Although the success of using the gesture control
varied from person to person, the overall feedback was very positive. Many interesting
ideas were submitted to further integrate the gesture control into the demonstrator.
As suspected before the meeting, one of the main suggestions was the creation of a
user interface for training custom gestures. Fortunately, the current implementation
should easily allow an adaption to include the requested interface. The consortium also
agreed upon limiting the number of possible functions to be mapped to customized
gestures, since it is always important to keep the memory load of users as low as
possible when designing interfaces. Whenever gestures are performed too rapidly
even for the deployed tracking system, interpolation problems are likely to occur, e.g.
resulting in gestures as the sloppy S seen in Figure 6.2. To avoid this problem, it was
suggested to combine the tracking with the data obtained by the built-in accelerometer
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6.2 Evaluation of the Recognition System

of the utilized 6-DOF input device. Another predictable request was the integration
of gesture control and a speech control system. A system applying speech recognition
was implemented and investigated independently from this thesis. Both interaction
modalities are very natural ways of communication and complement each other. In
fact one of the first interfaces to utilize speech and gesture input was the “Put That
There” system developed by Bolt [9] dating as far back as 1980. Since then the
promising idea of combining both modalities have been the subject of many studies
[5, 10, 44, 49, 85].
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7 Conclusion and Future Work

In this thesis the development of a gesture control interface for virtual environments
based on Hidden Markov Models was presented. The design focused on understanding
and applying the theory of HMMs to obtain a working system that could serve as a
basis for future development. At the same time it was important to devise a system
that justifies further research. For this reason, a fluent integration of the recognition
software into an existing workflow within an VR application was emphasized. To
assure user acceptance, visual feedback was included to improve the understanding
of the process and the results produced by the recognition system. A trail of spheres
along the path of the symbol while gesturing allows the user to immediately see
the input. The results are presented with the help of the three traffic light colors,
so anybody is able to easily understand the chosen color coding theme. The trail
of spheres will turn red if recognition failed, yellow if a gesture was recognized but
no according object could be referenced, and green if the process succeeded. The
underlying concepts of the system were described as well to allow the reader to retrace
the thoughts and ideas that led to the current interface. The crucial preprocessing
phase was then covered in detail. It was elaborated how the raw tracking data is
converted to assure an equidistant and time-invariant sampling which is the basis
for a dimensional reduction using principal components analysis. The subsequent
simple vector quantization produces the discrete observation symbols used to train and
recognize gestures. The crucial part of initializing the parameters of the HMMs used
for training were discussed to explain how this common problem was solved within
the context of this thesis. The process of training and recognition was realized using
the General Hidden Markov Model library in accordance to the presented theory of
the HMM. Further, it was assured that the devised recognition software in its current
form could easily be adapted for use in other applications. The planned integration
into the introduced VR application for interactive exploration of seismic data and
the presentation at the VRGeo June meeting was used to evaluate the recognition
system. The new interaction technique was tested by VR and geophysics experts
along with other new features over a period of several hours. The feedback delivered
by the participants and the results obtained from a separate study were both highly
positive. The recognition rates obtained while testing the system were unexpectedly
high. At the same time, the deployed HMM to filter out background noise kept
misclassifications at a very low rate. The goal was to create a system that would
serve as a proof of concept. Overall the implemented gesture control interface by far
exceeded the required results.

Despite the encouraging feedback, there are still many ideas for further improve-
ments of the system, the foremost being the integration of a training module to allow
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7 Conclusion and Future Work

customized gestures. This addition, as well as the the combination of gesture and
speech input, are part of the current research agenda for the VRGeo December meet-
ing in 2008. The main problem to be dealt with when developing a training module is
the number of training samples. It is impractical to ask a user to record 100 training
samples for a gesture before it can be used for system control. Kela et al. [42] intro-
duced noise to copies of the original training data achieving good recognition rates
with only two training samples (see Chapter 2). Using a similar approach could be
the basis for an acceptable training interface.

One of the major issues remains the problem of recognizing partial gestures de-
scribed in the previous chapter. In speech recognition, it is a common practice to
use one HMM for each phoneme – the smallest sound in a spoken language with a
distinguishable meaning. A similar approach could be adapted by describing certain
partial gestures with one HMM. These HMMs could then be combined to form one
whole gesture, avoiding the problem with partial gestures. Yet another concept that
could be borrowed from speech recognition is the use of Bakis HMMs. As described in
Section 4.1, this topology is not deployed in the current system because it is not gen-
eral enough to allow the addition of arbitrary symbols. However, having a final state
would be a simple solution to prevent the recognition of partial gestures. Hence, a
possibility would be to keep the current HMM prototype but further process a trained
model through an algorithm to extract a corresponding Bakis model. This could not
only solve the issue of partial gestures, but also improve recognition results.

Integrating these ideas into the developed recognition software will show whether
the desired improvements will be achieved. The promising results of the current ver-
sion indicate that the additional modality can be a valuable supplement to other
interaction techniques. Thus, investing more time and effort to perfect the imple-
mented system will definitively lead to further advances within the VRGeo project.
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The following material can be found on the enclosed CD:

• Abstract

• Bachelor’s Thesis

• References

– Internet Screenshots

– Publications

• Software

– Data

∗ HMM XML Files

∗ Test Data

· Trained Gestures

· Wrong Gestures

∗ Training Data (grouped by number of samples)

· 20
· 40
· 60
· 80
· 100

– Source Code

∗ C++ Files

∗ Python Modules

• Themenspezifikation
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