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Abstract

In recent years, Convolutional Neural Networks (CNNs), that are most
commonly applied to visual image analysis, have yielded astonishing re-
sults in a number of classification tasks. The areas of application include
the recognition of text, speech and various objects and structures. How-
ever, the various activities inside of CNNs and their reactions to specific
inputs remain unclear. For a better understanding of processes within a
CNN, correlations between neurons and layers have to be visualized to be
able to compare the reaction to different inputs afterwards. There are var-
ious approaches to visualize activities in CNNs in order to strengthen a
user’s confidence in the classification results by offering a look inside the
networks that usually work like black-boxes.

In this thesis, five visualization methods (Activation Maximization, Decon-
volution, Guided Backpropagation, Grad-CAM and Guided Grad-CAM)
are applied to CNN architectures that are trained to detect seismic features
in geological data. By visualizing features and other information from these
CNNs, it is possible to gain knowledge about the decision-making process
in the network and even derive optimization possibilities.



Zusammenfassung

In den letzten Jahren haben Convolutional Neural Networks (CNNs) er-
staunliche Ergebnisse bei einer Reihe von Klassifikationsaufgaben erzielt.
Die Anwendungsgebiete umfassen die Erkennung von Text, Sprache und
verschiedenen Objekten und Strukturen. Die Aktivitäten innerhalb der CNNs
und ihre Reaktionen auf bestimmte Eingaben bleiben jedoch unklar. Zum
besseren Verständnis der Vorgänge innerhalb eines CNN können Zusam-
menhänge zwischen Neuronen und Schichten visualisiert und die Reak-
tion auf verschiedene Eingaben verglichen werden. Es gibt verschiedene
Ansätze, die versuchen, Aktivitäten in CNNs zu visualisieren, um das Ver-
trauen in die Klassifikationsergebnisse zu stärken, indem sie einen Blick in
die Netzwerke werfen, die normalerweise wie Black-Boxes funktionieren.

In dieser Arbeit werden fünf Visualisierungsmethoden (Activation Maxi-
mization, Deconvolution, Guided Backpropagation, Grad-CAM und Gui-
ded Grad-CAM) auf CNN-Architekturen angewendet, die darauf trainiert
wurden, seismische Merkmale in geologischen Daten zu erkennen. Durch
die Visualisierung von Features und anderen Informationen aus diesen
CNNs ist es möglich, Erkenntnisse über den Entscheidungsprozess im Netz-
werk zu gewinnen und sogar Optimierungsmöglichkeiten daraus abzulei-
ten.
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1 Introduction

Working with huge amounts of data is a challenging task for humans and
computers. Especially in the oil and gas industry, datasets from seismic
surveys with a size of several hundred gigabytes[1] are collected and ana-
lyzed by geologists and geophysicists in order to eventually find promising
locations of oil and gas reservoirs. To find possible hydrocarbon deposits,
structures in the subsurface of the earth have to be interpreted by domain
experts in a difficult and time-consuming process.

Before computers had become common in the industry, the workflow com-
prised printing out acquired volume datasets slice by slice on sheets of pa-
per and interpreting every slice by hand. With modern technology, the pro-
cedure was revolutionized so that nowadays sophisticated software pro-
grams like OpenDTect1 and Petrel2 are used by domain experts in the in-
terpretation workflow. The experts interpret the volumetric data with user-
driven classification techniques that enable them to find and isolate im-
portant geological structures in a fraction of time. For example, a variety
of seismic attributes helps the interpreters to distinguish seismic features
from unimportant data and identified regions can be visualized through a
volume rendering approach in order to see the isolated three-dimensional
structures.

As user-driven classification techniques still require a lot of manual inter-
action, they are time-consuming and need highly experienced experts to
deliver useful results. Therefore, one focus of research is the automatic de-
tection and classification of important seismic structures to improve the in-
terpretation workflow of oil and gas experts. The VRGeo Consortium3 is an
alliance of members from the oil and gas industry and research institutes
like Fraunhofer IAIS that was founded in 1998 to provide innovation in
the industry and since then is hosted by Fraunhofer IAIS or its predecessor
GMD (Gesellschaft für Mathematik und Datenverarbeitung). First, innova-
tive user-driven classification techniques like the intuitive creation of fault
geometries[3] or the use of multi-dimensional transfer functions[4] for vol-
umetric data visualization have been developed at Fraunhofer IAIS as part
of the work in the VRGeo Consortium. Especially, the introduction of semi-
automatic detection of anomalies in local histograms[5] enabled domain
experts to concentrate on anomalous regions in the seismic datasets that
are most likely to contain important structures, as the approach highlights
these regions and therefore ignores irrelevant regions. As this method is
still not fully-automated, the use of deep learning came into focus.

1https://www.dgbes.com
2https://www.software.slb.com/products/petrel
3https://www.vrgeo.org
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In recent years, artificial intelligence in general and deep learning in par-
ticular have gained popularity not only in computer science research and
large technology companies, but also in the oil and gas industry. Deep
learning approaches offer the possibility to analyze and classify large amounts
of data automatically in a fraction of time that was needed for a manual
analysis. Thus, Convolutional Neural Networks (CNNs) are used to clas-
sify important geological structures that are mandatory to find hydrocar-
bon deposits. First results of geological structure detection with CNNs[15]
in the VRGeo Consortium were very promising and lately the DeepGeo4

framework has been introduced to easily execute distributed deep learn-
ing tasks from a web interface. Nevertheless, one disadvantage of CNNs is
their black-box property, making it difficult to understand their decisions
and classification results as most of the complex processes are hidden from
the user.

Therefore, this thesis will introduce several methods to visualize a net-
work’s features in multiple layers and reveal concepts learned by the net-
work in order to better understand the network’s operations and take a
look into the black-box. The key to proper automatic classification with
neural networks is the use of hybrid AI which describes a combination of
artificial intelligence (e.g. CNNs) with human knowledge to get the best
of both worlds. While neural networks can deal with large amounts of
monotonous data and learn to classify data based on training examples,
humans can steer and monitor the automatic process with contribution of
their domain knowledge. As part of the VRGeo project, this thesis con-
tributes to a better understanding of CNNs in the context of seismic inter-
pretation and shows optimization possibilities for automatic classification
approaches in the oil and gas exploration workflow.

This thesis is structured as follows. In chapter 2, the process of data acquisi-
tion and seismic interpretation will be explained to understand the geolog-
ical background. Chapter 3 will introduce related work about neural net-
works and take a deeper look into CNNs, that are especially useful for clas-
sifying image data. As the focus of this thesis lies on understanding CNNs
by visualization, several visualization methods like Activation Maximiza-
tion or Deconvolution will be discussed in chapter 4. Subsequently, the
implementation of these methods into the Fraunhofer’s DeepGeo frame-
work will be explained in chapter 5. Finally, the implemented methods
will be evaluated in detail in chapter 6 by applying them to CNNs trained
on seismic datasets and comparing the visualization results. Also in this
chapter, optimization possibilities for the CNNs and the training data will
be discussed. At the end, the results will be summarized in chapter 7 and
an outlook into the future of CNN visualization will be given.

4https://www.vrgeo.org/index.php?id=639
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2 Geological Background

The exploration of the earth’s crust in order to find the location of oil and
gas reservoirs is a time-consuming process in which huge amounts of data
have to be collected and analyzed by geophysicists and geologists to gener-
ate detailed models of the earth’s subsurface and to eventually predict the
location of hydrocarbon deposits.

In this chapter, the geological background and seismic interpretation will
be briefly discussed in order to understand the value of applying Convolu-
tional Neural Networks to classify seismic structures and features.

2.1 Data Acquisition

To be able to predict the location of oil and gas reservoirs, geophysicists
have to know which rock layers and structures lie beneath the surface of
the earth to conclude where hydrocarbons might be trapped. The most
common method of obtaining subsurface data is the use of seismic reflec-
tion. Similar to an ultrasound image used by a doctor to see an embryo
inside a mother’s body, the echo of strong sound or shock waves are mea-
sured to deduce the composition of different rock layers in the subsurface.
On land, sound waves are sent into the ground from a specifically built ve-
hicle, called vibrator truck. The reflections of these waves are captured by
a recording vehicle that carries a set of microphones called seismometers
or geophones (see Figure 1). At every transition from one layer to the next,
an echo can be measured by the geophones.

Figure 1: Data acquisition by seismic reflection on land [2]
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If the area of exploration lies beneath the sea, the vibrator vehicle is re-
placed by a ship that uses airpulses as seismic source. The ship carries a
line of seismometers that are called hydrophones in this case. These hy-
drophones record the echos of the pulses (see Figure 2), while being posi-
tioned on a long line that can have a length of several kilometers.

Figure 2: Data acquisition by seismic reflection on sea [2]

Apart from seismic exploration, there are other methods to create models
of the subsurface using gravity, magnetism, electromagnetic waves or even
radioactive minerals [17]. The use of seismic reflection still resembles the
most popular method, as it is very environment-friendly and delivers high-
quality results.

2.2 Seismic Interpretation

After the acquisition of seismic data, all the information is processed e.g. to
filter out noise and combined with information from other sources to even-
tually build a three-dimensional model of the explored subsurface area. To
visualize this model, the three-dimensional cube is viewed slice by slice. In
seismic interpretation, there are three kinds of slices. The inline direction
is always parallel to the direction in which the data was acquired. Figure
3a shows the collection of data on sea where the inline thus corresponds to
the direction in which the ship is towing the hydrophones. The crossline
is perpendicular to this direction while the time is measured downwards
into the ground. Eventually, the resulting 3D volume can be viewed either
as inline, crossline or as time slices, as depicted in figure 3b.

4



(a) (b)

Figure 3: Directions of inline, crossline and time slices in a 3D survey

For a better visibility of seismic features and structures in the subsurface
area, a set of seismic attributes can be derived or extracted from the gath-
ered seismic data. This set includes attributes like the measured time or
amplitude but also frequency, similarity or dip among many others [17, 8].
With these attributes, experienced geophysicists or geologists interpret this
model in order to find structures that form a so-called trap for hydrocar-
bons. The Schlumberger Oilfield Glossary [29] defines a trap as a "config-
uration of rocks suitable for containing hydrocarbons and sealed by a rel-
atively impermeable formation through which hydrocarbons will not mi-
grate"5. These structures block the upward migration of hydrocarbons and
indicate the location of an oil or gas reservoir nearby.

(a) A fault in Morocco [6]

(b) F3 dataset (inline)7

(c) Parihaka dataset (crossline)8

Figure 4: Pictures of faults from subsurface exploration (right) and a fault that
came to the surface in Morocco (left)

5https://www.glossary.oilfield.slb.com/Terms/t/trap.aspx
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The most common of these structures are faults. According to the Schlum-
berger Oilfield Glossary [29] a fault is "a break or planar surface in brittle
rock across which there is observable displacement"6 like the displacements
clearly visible in Figure 4 for faults in Morocco and the datasets F37 and
Parihaka8. Faults are the result of rock-mass movements in the subsurface
and can cause earthquakes if they lock in regions of high friction and sud-
denly release the built-up energy in form of seismic waves. Depending on
the fault’s nature some faults "can act as a conduit for migrating oil or gas"6

whereas other faults "can act as a fault seal"6 that prevents hydrocarbons
from migrating.

(a) Waimakariri River, New Zealand [23]

(b) Parihaka dataset (crossline)
(c) Parihaka dataset (timeslice)

Figure 5: Pictures of a river in New Zealand causing a channel structure (a) and
channels in Parihaka dataset from crossline (b) and timeslice (c)

Another important structure visible in seismic volume data is called chan-
nel. A channel is "a linear, commonly concave-based depression through
which water and sediment flow and into which sediment can be deposited
in distinctive, often elongated bodies. [...] The close proximity of coarse-
grained and fine-grained sediments can ultimately lead to the formation

6https://www.glossary.oilfield.slb.com/Terms/f/fault.aspx
7F3 dataset covers a Dutch part of the North Sea and is publicly available [7]
8Parihaka dataset covers an area of New Zealand’s coast and is publicly available [21]
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of stratigraphic hydrocarbon traps".9 These structures result from former
rivers and streams which have eroded the rock beneath them. Figure 5a
shows the Waimakariri River in New Zealand that has a meandering shape
which is a typical indicator for a channel in subsurface volume data (see
Figure 5b, 5c).

Another trap for hydrocarbons is a salt dome. The Oilfield Glossary [29]
defines this as "a mushroom-shaped or plug-shaped diapir made of salt,
commonly having an overlying cap rock. [...] Hydrocarbons are commonly
found around salt domes because of the abundance and variety of traps
created by salt movement and the association with evaporite minerals that
can provide excellent sealing capabilities".10 Thus, salt domes can be rec-
ognized in seismic volume data by their dome-shape (see Figure 6).

Figure 6: Salt Dome in F3 dataset

Eventually, with the help of several interpretation iterations, the additional
use of well logs and geological domain knowledge, geophysicists and ge-
ologists can predict the location of oil and gas reservoirs with high confi-
dence.

9https://www.glossary.oilfield.slb.com/Terms/c/channel.aspx
10https://www.glossary.oilfield.slb.com/Terms/s/salt_dome.aspx
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3 Related Work

Neural Networks are used in a variety of tasks in research and industry
such as image classification, speech and face recognition or the automatic
analysis of huge amounts of data. For image data the use of CNNs has
proven to deliver outstanding results in several applications. This chapter
will give an overview on related work in the field of deep learning and
artificial intelligence including different kinds of neural networks.

3.1 Neural Networks

The term artificial intelligence is widely used today and in most cases de-
scribes a computer system that has some of the abilities of the human mind,
such as the ability to recognize images or languages. An intelligent system
is able to learn how to solve its specified task on its own. In order to achieve
this intelligence, scientists analyzed the human brain and tried to simulate
processes inside of it by forming a neural network.

A simple artificial neuron, called perceptron, was already introduced by
Rosenblatt in 1961 [27] inspired by earlier work of McCulloch and Pitts
in 1941 [20]. A perceptron receives several binary inputs x1, x2, ..., xn and
produces a single binary output a (see Figure 7).

x1

x2

x3

a 

Figure 7: Representation of a single perceptron

The output a is calculated by multiplying each input xi with a correspond-
ing weight wi ∈ R. Then, a bias value b ∈ R is subtracted from the sum of
all pairs. If the result is less or equal 0 the output will be 0, otherwise it will
be 1 (see Equation 1).

a =

{
0 if

∑
i xiwi + b ≤ 0

1 if
∑

i xiwi + b > 0
(1)

To overcome the need of having binary inputs, the perceptron can be ex-
tended to a sigmoid neuron. Sigmoid neurons have the ability to work
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with real input values and furthermore calculate real output values instead
of binary ones. The final output of a sigmoid neuron is defined as:

a = σ

(∑
i

xiwi + b

)
(2)

where σ(z) depicts the sigmoid function:

σ(z) ≡ 1

1 + e−z
(3)

Sigmoid neurons have the advantage that small changes in their parame-
ters only lead to small changes in the output, in contrast to perceptrons,
where small changes in parameters may lead to a complete change of the
output. In literature, sometimes σ is also called logistic function and this
kind of neuron logistic neuron. In modern neural network architectures the
sigmoid function often is replaced by the tanh function defined as:

σ(z) = tanh(z) =
ez − e−z

ez + e−z
(4)

or the rectified linear unit (ReLU) which is defined as:

σ(z) = max(0, z) (5)

Graphs of both functions are depicted in figure 8.

(a) tanh (b) ReLU

Figure 8: Comparison of tanh and ReLU functions
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The advantage of the ReLU function is a significant decrease of training
time, which makes it especially useful for large CNN architectures (see
chapter 3.2). With the use of weights, biases and an activation function
such as ReLU, a single neuron in a neural networks now looks as depicted
in figure 9.

x1

x2

x3

a = σ(z) 

w1

w2

w3

b 

Figure 9: Neuron with weights, bias and activation function

A network of many neurons arranged in a number of layers can make more
complex decisions compared to a single neuron. Figure 10 shows a network
consisting of four layers. The left layer is called input layer and contains
all input values. The right layer is the output layer and outputs the final
decision of the network. All layers in between are named hidden layers
and use the results of the entire neurons from the previous layer to make
decisions. The advantage of a many-layer network is that neurons in the
second layer make their decisions based on the output of the first layer
neurons. Thus, with every layer the decisions are made on a more com-
plex and abstract level. Networks that pass the output of a layer to the next
layer without any loops are termed feed-forward networks. This kind of
network is called multi-layer perceptrons (MLP), although it actually con-
sists of sigmoid neurons.

input layer output layerhidden layers

Figure 10: Multi-layer perceptrons (MLP)
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3.1.1 Gradient Descent

In order to find weights and biases that lead to desired outputs, a train-
ing process with labelled training data is performed. An example input
is passed to the first layer of which the wanted output is already familiar.
Then, the actual output is compared to the wanted output and the net-
work’s parameters can be adapted to better fit the desired result. The im-
provement can be quantified by a cost function (also called loss or objective
function) that can be defined as:

C(w, b) ≡ 1

2

∑
x

‖y(x)− a‖2 (6)

In equation 6, w and b denote the weights and biases in the network, a is
a vector denoting all outputs of the network and y(x) corresponds to the
correct label of input x. This quadratic cost function becomes less when
y(x) is close to a which is the desired result after training the network.

Figure 11: Visualization of a quadratic cost function with parameters v1, v2 [22]

In order to find parameters w and b such that C(w, b) gets minimal, the gra-
dient descent technique can be applied. The goal of gradient descent is to
find the global minimum of the cost function. The analytical approach of
solving this problem via the derivatives of C turns out to be far too com-
plex for a huge number of parameters. Another approach is to imagine
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the quadratic cost function as a valley (see figure 11) and placing a mar-
ble somewhere on the edge of this valley. Then, the marble will follow the
direction of the steepest descent and will eventually end in its global min-
imum. In general, the cost function can be seen as a real-valued function
C(v) with an arbitrary number of parameters in a vector v. For simplicity,
we look at only two parameters in this example that we call v1, v2. Thus,
the change of the marble’s position can be described as:

∆C ≈ ∂C

∂v1
∆v1 +

∂C

∂v2
∆v2 (7)

We also define the vector ∆v as the vector of changes in v and the gradient
of C as the vector of partial derivatives:

∆v ≡ (∆v1,∆v2)
T (8)

∇C ≡
(
∂C

∂v1
,
∂C

∂v2

)T
(9)

With these definitions, equation 7 can be rewritten as:

∆C ≈ ∇C ·∆v (10)

In order to decrease the overall cost C, the vector ∆v needs to be updated
with proper values in every training iteration. To achieve that, we choose
a small positive parameter η, which is commonly known as learning rate,
and move along the gradient of C:

∆v = −η∇C (11)

Inserted into equation 10, we get:

∆C ≈ −η∇C · ∇C = −η ‖∇C‖2 (12)

With ‖∇C‖2 and η always being positive, the change of the cost function C
is therefore always negative which guarantees a decrease of cost with every
training iteration.

Replacing the parameters v1, v2 with the neural network parameters w and
b again, the rule to update every weightwk and bias bl is defined as follows:

12



wj → w′j = wj − η
∂C

∂wj
(13)

bj → b′j = bj − η
∂C

∂bj
(14)

As the gradient descent process is expensive and time-consuming, the idea
of stochastic gradient descent (SGD) [26] came up to speed up the gradi-
ent calculation. This is done by calculating ∇C only from a small batch
of randomly chosen inputs and repeating this step until all input samples
have been consumed. With SGD, the gradient is only approximated, but
the overall direction is still correct. Thus, the training can be completed in
a fraction of time compared to normal gradient descent but with similar
results, which makes SGD preferable.

3.1.2 Backpropagation

In the previous section the learning process of a neural network has been
described using the gradient descent technique. However, the decrease of
the cost function C relies on the calculation of ∂C

∂w and ∂C
∂b which is not

trivial. Therefore, the Backpropagation algorithm [28] has been proposed
for fast computation of these gradients.

This algorithm is about measuring how much the alteration of a weight or
bias changes the output of the cost function. In the following notation, zlj
describes the value z for the jth neuron in the lth layer, defined as:

zlj ≡
∑
k

wljka
l−1
k + blj (15)

Here, wljk denotes the weight of the connection between the kth neuron in
layer l − 1 and the jth neuron in layer l.

Then, we imagine that a small change ∆zlj is added to a neurons weighted
input which causes the overall cost to change by ∂C

∂zlj
∆zlj . Thus, the error δlj

in the jth neuron in the lth layer is defined as:

δlj ≡
∂C

∂zlj
(16)

For the last layer L the error is given as:
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δLj =
∂C

∂aLj
σ′(zLj ) (17)

On the right hand side of this equation, the first term ∂C/∂aLj describes
how fast the cost is changing depending on the activation of the jth neuron.
The second term σ′(zLj ) is the derivative of the activation function of the jth

neuron and measures the change in σ at position zLj . Notice that alj = σ(zlj).

The term ∂C/∂aLj can be computed, depending on the cost function. For
example, for the quadratic cost function C = 1

2

∑
j(yj − aLj )2 the partial

derivative equals:

∂C

∂aLj
= aLj − yj (18)

To consider all neurons of one layer, δL can be defined in a matrix-based
notation as:

δL = ∇aC � σ′(zL) (19)

= (aL − y)� σ′(zL) (20)

with � being the element-wise product, also called Hadamard product.

From here on, we can use δL to compute the errors in the previous layers
by passing the already computed errors backwards. The error δl in the lth

layer is then calculated by:

δl = ((wl+1)T δl+1)� σ′(zL) (21)

The term (wl+1)T δl+1 weights the known error δl+1 from the next layer ac-
cording to each neurons weight in layer l, while the element-wise product
�σ′(zL) passes this error backwards through the activation function.

In order to pass the errors through the network and calculate gradients of
the cost function with respect to biases or weights, the chain rule of calculus
has to be applied. For any variable z depending on y, which itself depends
on x, the chain rule states:

∂z

∂x
=
∂z

∂y
· ∂y
∂x

(22)
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With the help of the chain rule from equation 22 and the equations 15 and
16, we can derive the change of the cost function with respect to a bias blj in
the network:

∂C

∂blj
=
∂C

∂zlj
·
∂zlj

∂blj
= δlj (23)

Thus, ∂C/∂blj turns out to be exactly the error δlj of the neuron the bias
belongs to. With the same equations, the change of the cost function with
respect to a weight wljk is derived as:

∂C

∂wljk
=
∂C

∂zlj
·
∂zlj

∂wljk
= δlj · al−1k (24)

In summary, the four fundamental equations for the Backpropagation al-
gorithm are:

δL = (aL − y)� σ′(zL) (20)

δl = ((wl+1)T δl+1)� σ′(zL) (21)

∂C

∂blj
= δlj (23)

∂C

∂wljk
= δlj · al−1k (24)

With these equations it is now possible to compute the gradient of the cost
function in order to change the network parameters w and b such that the
overall cost is decreased. The learning process consists of:

1. Passing input data forward through the network to obtain values
from the output layer aL

2. Performing the Backpropagation algorithm

• Computing the error δL of the output layer with equation 20

• Backpropagating the error for each l = L − 1, L − 2, ..., 2 with
equation 21

• Calculating the gradients of the C with respect to wl and bl with
equations 23 and 24
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3. Performing the gradient descent method by updating the parameters
wl and bl according to equations 13 and 14

3.2 Convolutional Neural Networks

Multilayer perceptrons (MLP) have very limited capabilities concerning
image classification tasks because they do not scale well with image size
and they lack the ability to detect specific structures or patterns in images.
Convolutional neural networks improve MLP by adding several new com-
ponents like convolution and max pooling layers that take spatial structure
of images into account.

3.2.1 Biological Inspiration

In fact, convolutional neural networks are inspired by the visual cortex of
animals and humans. Hubel and Wiesel [13, 14] conducted experiments
on the visual cortex of anaesthetized cats by stimulating visual cells with
lights in different shapes, orientations and intensities and measuring the
firing of the neurons.

They found out that visual cells only react to changes in a limited region on
the retina, which Hubel and Wiesel called a neuron’s receptive field. These
receptive fields can be of a simple or a complex type. The highest reac-
tion of neurons was achieved with shapes of narrow long rectangles and
straight-line border between regions of different brightness depending on
the orientation of these shapes. While the reaction of simple and complex
fields did not differ concerning different shapes, the complex fields are usu-
ally larger than the simple fields and react to shapes independently of their
position in the receptive field.

Figure 12: Human vision compared to CNN [25]
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The study also showed that similar cells are spatially close to each other
and are organized hierarchically in layers, with simple cells in lower layers
and complex cells in higher layers. This structure offers the ability to react
to increasingly abstract and generalized information. Figure 12 shows how
the shapes and concepts detected by CNNs (right) resemble the levels of
abstract concepts in the human vision (left).

3.2.2 Architecture

There are three basic ideas that convolutional neural networks use to im-
prove their results in image-related tasks. The first idea is the use of local
receptive fields inspired by the visual cortex of animals and humans (see
chapter 3.2.1). Instead of connecting every neuron from the previous layer
with every neuron of the current layer, there are convolutional layers in
CNNs that only connect a small localized region. As depicted in figure 13,
a small field of neurons from the input layer (left) is used to obtain the out-
put of one neuron in the first hidden layer (right). In this case the input
layer has a size of 28 × 28 with a receptive field of 5 × 5 which results in a
24× 24 output for the first hidden layer given that the offset (stride) for the
field is 1.

Figure 13: Receptive field in CNN [22]

The second idea is the use of shared weights and biases. Instead of using
separate weights and biases for each neuron, in a convolutional layer the
same bias and weights are used for every neuron of the output. For a 5× 5
receptive field the output of the activation at position (j, k) is:

aij,k = σ

(
b+

4∑
l=0

4∑
m=0

wl,ma
i−1
j+l,k+m

)
(25)
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where σ denotes the activation function, e.g. the sigmoid or the ReLU func-
tion (see chapter 3.1). Equation 25 shows a convolution operation which
can also be written as a1 = σ(b + w ∗ a0), where a1 denotes the output
activation function, a0 the input activation function and ∗ the convolution
operator.

Every neuron in the first hidden layer thus detects exactly the same feature,
a straight line for example. The mapping from one layer to the next layer
is called feature map and is usually used several times per convolutional
layer such that one layer can detect several features. Figure 14 shows 20
feature maps of a CNN’s convolutional layer that is able to detect hand-
written digits. These feature maps are also referred to as kernels or filters
and basically show the weights of the 5 × 5 local receptive field and the
features it responds to.

Figure 14: Feature maps in a convolutional layer [22]

The third idea is the use of pooling layers that immediately follow a con-
volutional layer. A pooling layer condenses feature maps by consecutively
summarizing small local regions. The definition of the pooling kernel de-
fines the size of the pooling output. Figure 15 shows the 24 × 24 output
feature map of a hidden layer (left) and the resulting pooling output (right)
with a size of 12× 12 produced by a 2× 2 pooling kernel.
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Figure 15: Max Pooling of a feature map [22]

The most commonly used type of pooling is called max pooling in which
only the maximum value inside the kernel is used as output. Another type
of pooling is average pooling where the average over all values inside the
pooling kernel is used as output. The pooling technique decreases the num-
ber of parameters inside a convolutional neural network while keeping the
relevant information about features in the input image.

Figure 16: Structure of a common CNN [22]

In conclusion, the structure of a common convolutional neural network
consists of one or more convolutional layers each followed by a pooling
layer and finally processed by one or more fully-connected layers. In figure
16 the examples of this section are combined to show the general structure
of a convolutional neural network. A 28 × 28 input image is processed by
a convolutional layer with 3 kernels, resulting in 3 different 24× 24 feature
maps. These feature maps are then passed to a max pooling layer which
summarizes them to a size of 12× 12. Finally, these layers are followed by
a standard fully-connected network which produces the final output of the
network to classify the input image.
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3.2.3 Recent Network Architectures

One of the first CNN architectures introduced by LeCun et al in 1998 is
called LeNet [19]. This network is able to recognize hand-written digits
and consists of seven layers excluding the input layer (see figure 17). The
first four layers perform two convolutions each followed by a subsampling
layer. The last three layers consist of a third convolution and two fully-
connected layers which calculate the network’s final prediction.

Figure 17: Architecture of LeNet [19]

In 2012, AlexNet [18] was proposed which has a very similar architecture
to LeNet but is deeper in terms of the number of filters per layer. AlexNet
consists of five convolutional layers followed by three fully-connected lay-
ers and uses techniques like max pooling, dropout, data augmentation and
a ReLU activation function instead of the tanh or sigmoid function. It was
the first CNN to reduce the top-5 error from 26% to 15.3% in the ImageNet
Large Scale Visual Recognition Challenge11 (ILSVRC).

The so-called GoogleNet [34] also known as Inception V1 was presented
by Google in 2014. GoogleNet was able to achieve a top-5 error of 6.67%
in ILSVRC 2014 which is close to human performance and earned them
the first place in the competition. The network architecture is inspired by
LeNet but uses 22 layers. Through optimization techniques like batch nor-
malization, image distortion and RMSprop, Google was able to drastically
reduce the number of parameters from 60 million for AlexNet to four mil-
lion. The second place in ILSVRC 2014 was taken by VGG [32] which was
developed by Simonyan and Zisserman. The VGG network architecture
uses 16 convolutional layers with many filters which ends up in 138 mil-
lion parameters.

The Inception V1 CNN was revised several times, resulting in Inception V3
[35] in 2016. This version of the Inception network achieved a top-5 error
rate of 3.58% on the ILSVRC classification benchmark which is almost a

11http://image-net.org/challenges/LSVRC/
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decrease in error rate by a factor of two compared to Inception V1. Figure
18 shows the architecture of Inception V3 which increased the number of
layers from 22 to 48.

Figure 18: Architecture of Inception V3. Source: https://cloud.google.
com/tpu/docs/inception-v3-advanced

One year later in ILSVRC 2015, He et al presented the so-called Residual
Neural Network (ResNet) [11] that uses up to 152 layers but still has a lower
complexity than VGG. To be able to train a network of this size the authors
used shortcut connections that enable the network to skip one or more lay-
ers. Using this architecture achieved a top-5 error rate of 3.57% in ILSVRC
and outperforms human-level performance in this kind of dataset.

3.2.4 3D Convolution

In some applications like medical imaging or seismic exploration, there
is only three-dimensional data available although standard CNN architec-
tures perform 2D convolutions on 2D input data. Nevertheless, it is pos-
sible to generate 2D slices from a 3D data cube and feed these slices as 2D
images into a convolutional neural network. By doing this, information on
the third dimension can get lost because every slice is processed separately
from its adjacent slices.
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Figure 19: 2D Convolution [36]

Figure 19 shows the standard 2D convolution with 2D input data. The
kernel of size k×k is moved across the input image with dimensionsH×W .
The result of this operation is a 2D feature map whose size depends on
kernel size and stride of the convolution.

Figure 20: 2D Convolution with 3D input [36]

Figure 20 presents the process of passing 3D input data into a standard 2D
convolution layer. The input is seen as a stack of L 2D slices that each have
a size of H ×W . The kernel of size k × k is applied to all L slices and the
results are summed up to form a single 2D feature map as output.

In order to capture spatial information from 3D data, a CNN can also use
3D convolutions. In this case, the kernel has to be extended by a third
dimension d and is moved across the whole input volume of sizeH×W×L
(see figure 21). The resulting output feature map is also three-dimensional
and preserves features across all three dimensions.
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Figure 21: 3D Convolution [36]

To perform a 3D convolution, equation 25 from section 3.2.2 has to be
adapted like follows to calculate the activation at position (j, k, h):

aij,k,h = σ

(
b+

k∑
l=0

k∑
m=0

d∑
n=0

wl,m,na
i−1
j+l,k+m,h+n

)
(26)

The same can be applied to the max pooling operation. Instead of choosing
the maximum value in a 2× 2 kernel, the 3D max pooling looks at a three-
dimensional kernel e.g. of size 2× 2× 2.
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4 Visualization Methods

Visualizing features in CNNs is common practice to understand and trust
decisions made by a network. While activations on the first layer can di-
rectly be projected into pixel space, correlations between higher layer fea-
tures and the input image pixels are much more complex. Higher layers
represent more complex and abstract concepts that can be detected by a
neural network. Therefore, research focused a lot on visualizing features
especially in higher layers. In this chapter, several visualization methods
with different abilities and aims will be described and their usage for seis-
mic feature detection will be analyzed.

4.1 Activation Maximization

The first visualization method is called Activation Maximization [9, 25] and
is used to generate an input image that maximizes the activation of a certain
neuron in any layer. Thus, Activation Maximization can generate images
that certain neurons prefer most.

The aim of Activation Maximization is to synthesize an input image x∗ that
maximizes the activation ali of the ith neuron in the lth layer:

x∗ = argmax
x

(
ali(x)

)
(27)

The fundamental algorithm consists of three sequential steps:

1. A random input image x = x0 is generated and set as input for the
algorithm.

2. The gradients ∂ali
∂x with respect to the input image x are calculated

using Backpropagation.

3. The direction of the gradient ∂ali
∂x is used to change each pixel of the

input image iteratively to maximize each neurons activation with a
step size of η.

x← x+ η
∂ali
∂x

(28)

Steps 2 and 3 are repeated until the change in image x between two iter-
ations is below a certain threshold. Image x then represents the optimal
input image for the given neuron i and thus maximizes its activation. In
order to compute a correct maximization, ali denotes the unnormalized ac-
tivation value of the last layer in the network before applying the softmax
function.
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Figure 22 shows 36 neurons from each of the three hidden layers of a Deep
Belief Network [12] that was trained to detect hand-written digits from the
MNIST dataset12. In the first hidden layer (left) only rough patterns and
lines are visible. The second layer (middle) shows shapes that begin to re-
semble hand-written digits. In the last hidden layer the shapes of different
digits are clearly visible, which proves that the neurons in this layer have
been successfully trained to detect hand-written digits.

Figure 22: Results of Activation Maximization [9]

The MNIST dataset consists of 70,000 black-and-white images with a size of
28 × 28 pixels. Modern CNNs use much more complex input images with
dimensions of e.g. 299 × 299 pixels for Inception V3 [35] and three color
channels (RGB). In this case, Activation Maximization delivers unrealistic
and not easily interpretable results.

To overcome these disadvantages of gradient ascent techniques like Acti-
vation Maximization, Yosinski et al [37] proposed the use of regularization.
The regularization can be applied in step 3 of the optimization process, re-
sulting in a change of the input image as follows:

x← rθ

(
x+ η

∂ali
∂x

)
(29)

where rθ denotes a regularization function.

A common regularization technique is L2 decay which penalizes large val-
ues and prevents some extreme pixel values. To implement L2 decay, rθ is
defined as:

rθ(x) = (1− θdecay) · x (30)

where θdecay denotes the decay parameter to control the strength of regu-
larization.

12http://yann.lecun.com/exdb/mnist/
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Another regularization technique applicable for Activation Maximization
is Gaussian blur. Images produced by gradient ascent techniques often
suffer from high frequencies which are neither realistic nor interpretable.
Regularization via Gaussian blur is implemented as:

rθ(x) = GaussianBlur(x, θwidth) (31)

where θwidth specifies the width of the blurring kernel. As convolution with
a blurring kernel is computationally expensive, the parameter θevery is in-
troduced to perform the blurring only every θevery steps. This decreases the
computational costs and does not change the results, as blurring multiple
times with a small kernel is equivalent to blurring once with a larger kernel.

4.2 Deconvolution

To gain an insight into intermediate convolutional layers, the Deconvolu-
tion method [38] was introduced by Zeiler and Fergus in 2014. This tech-
nique shows patterns in the training set that activate given convolutional
feature maps by reconstructing these features in the input pixel space.

The authors propose to extend an existing convolutional neural network
with an inversed version of itself called DeconvNet [39] that, after a forward-
pass through the original network, performs an upsampling of a certain
feature map back to the input image. Figure 23 shows the architecture of
DeconvNet with the standard forward-pass on the right and backward-
pass on the left.

The results of a previous layer are passed to the convolution operation of
the next layer, then the resulting feature map is passed through a ReLU
function and in the end processed by a max pooling. As the max pooling
operation decreases the size of the feature map and therefore removes val-
ues from the map, this process cannot easily be inverted. Zeiler and Fergus
proposed to save each position of the highest value in the max pooling ker-
nel and use this switch in the backward-pass to perform an unpooling. The
left side of figure 23 shows the backward-pass that uses the reconstruction
(or the network’s output in case of the final layer) of a higher layer as in-
put. With the previously recorded switches, the max pooling operation can
be inverted by filling the max pooling kernel with zeros and restoring the
maximum value in the position marked by the switch (see figure 24).
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Figure 23: Architecture of DeconvNet [38]

Figure 24: Unpooling via switches in DeconvNet [38]

This map is passed through a ReLU function another time and is finally
being "deconvolved". The name Deconvolution might imply that this tech-
nique uses the inverse of the convolution operation. But in fact, the De-
convolution method uses a transposed convolution to upsample a feature
map.
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Figure 25: Forward-pass convolution [16]

In figure 25 the forward-pass of a standard convolution operation with a
kernel size of 3 × 3 and a stride of 2 is depicted. At first, all values inside
of the red box on the left are multiplied with the convolution filter which
results in a single value that is written to the red field of the feature map
on the right. Afterwards, the convolution kernel is moved to the right by a
stride of 2 and the next value of the feature map is computed.

Figure 26: Backward-pass convolution [16]

In the backward-pass (see figure 26) a 2 × 2 input is upsampled to a 4 × 4
output by applying the so-called deconvolution. In this case, the convo-
lution kernel is weighted with each of the input values and applied to the
output feature map where overlapping regions are summed up. This oper-
ation is also called transposed convolution, backward-strided convolution
or upconvolution [16].
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Figure 27: Evolution of features with Deconvolution [38]

Randomly chosen features from several convolutional layers obtained by
the Deconvolution method are shown in figure 27. In the first layer there
are usually only basic features like lines, dots or gradients visible. In higher
layers the features become more complex and can comprise objects like
faces, eyes or wheels.

4.3 Guided Backpropagation

Guided Backpropagation is a visualization method introduced by Sprin-
genberg et al [33] that uses a modified Deconvolution approach. This ap-
proach can be applied to a wider range of neural network structures and
it leads to more accurate reconstructions of features especially from higher
layers.

The authors questioned the necessity of different components commonly
used in convolutional neural networks. They found out that a max pooling
layer can be replaced by a convolutional layer with increased stride without
losing accuracy [33].

Figure 28: Scheme of forward and backward-passes [33]

To reconstruct a feature from a higher layer using Guided Backpropaga-
tion or Deconvolution, an input image is passed into the network up to a
given layer, as depicted in figure 28. In the feature map of this layer, every
value except one is set to zero. Then, this feature map is passed backwards
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through the network to obtain a reconstruction of the activated feature at
the input layer.

The important step in reconstructing features of higher layers is the backward-
pass, where the ReLU function has to be applied. In a forward-pass through
the network the ReLU function σ(z) = max(0, z) sets every negative value
to zero, as presented in the upper left of figure 29.

Figure 29: Comparison of different backward-passes [33]

Using the Backpropagation algorithm (see section 3.1.2), only the bottom
gradient, i.e. the values from the forward-pass, are used for masking out
values in the backward-pass. Thus, only those positions are set to zero that
have been negative in the forward-pass (see figure 29, lower left) and the
gradient of feature i in layer l denoted as Rli is calculated as:

Rli = σ(zli) ·Rl+1
i (32)

where Rl+1
i = ∂aL/∂al+1

i and σ(zli) being the ReLU function that produces
a feature map where every negative value has been replaced by zero.

For the Deconvolution method (section 4.2) the ReLU nonlinearity is ap-
plied in the backward-pass using the top gradient for the Backpropagation.
This results in zeros at positions where the top gradient is negative and the
gradient is computed as:

Rli = σ(Rl+1
i ) ·Rl+1

i (33)

The Guided Backpropagation combines the standard Backpropagation al-
gorithm with the Deconvolution approach by using both bottom and top
gradients to calculate the propagation through the ReLU nonlinearity in
the backward-pass. Then, values are replaced by zero if at least one of the
corresponding gradient values is zero. The gradient therefore is calculated
as:

Rli = σ(zli) · σ(Rl+1
i ) ·Rl+1

i (34)
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The name Guided Backpropagation originates from the additional guid-
ance signal from the top gradient, which is added to the standard Back-
propagation.

Figure 30: Features obtained by Guided Backpropagation [33]

Some results of Guided Backpropagation are depicted on the left of figure
30 with the corresponding input image crops on the right. For RGB images
Guided Backpropagation delivers more accurate and visible features.

4.4 Class Activation Mapping

In 2016, Zhou et al proposed a visualization method called Class Activa-
tion Mapping [40] (CAM) that is able to produce a heatmap indicating the
important regions in the input image that lead to the network’s decision for
a given class. In the original paper, these Class Activation Maps could only
be obtained from fully convolutional neural networks that work without
any fully-connected layer and use global average pooling.

The result of the global average pooling operation performed after the last
convolutional layer is obtained by:

aLi =
1

Z

∑
x,y

fLi (x, y) (35)

where fLi (x, y) depicts the activation of unit i at spatial position (x, y) from
last convolutional layerL. The input for the softmax function is then weighted
by the weights wci for every class c:

Sc =
∑
i

wcia
L
i (36)
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where wci is an indicator for the importance of aLi for class c. The final
output of the softmax function for every class c is then given by:

Pc =
exp(Sc)∑
c exp(Sc)

(37)

The bias b is ignored in this case as it has too little influence on the classifi-
cation result. By plugging together equations 35 and 36, we obtain:

Sc =
∑
i

wci
1

Z

∑
x,y

fLi (x, y) (38)

=
1

Z

∑
x,y

∑
i

wcif
L
i (x, y) (39)

Eventually, the Class Activation Map MCAM
c for class c is defined as:

MCAM
c (x, y) =

∑
i

wcif
L
i (x, y) (40)

which directly indicates the influence of an activation at spatial position
(x, y) leading to a classification into a class c. Note that Sc = (1/Z)

∑
x,yMc(x, y)

holds.

Figure 31: Mapping of class scores with CAM [40]

Figure 31 shows the process of mapping the predicted class score back to
the previous convolutional layer. Thus, the CAM heatmap is generated
and highlights the most discriminative regions of a given class in the input
image.
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4.5 Grad-CAM

To overcome the limitation of using only fully-convolutional neural net-
works, Selvaraju et al proposed a modification of the Class Activation Map-
ping method which they called Gradient-weighted Class Activation Map-
ping [30] (Grad-CAM). Grad-CAM can be applied to a significantly broader
range of neural networks, including common convolutional neural net-
works with fully-connected layers at the end.

For this approach, a neuron importance weight αci is defined as:

αci =
1

Z

∑
x,y

∂yc

∂fLi (x, y)
(41)

where the first part represents the global average pooling operation and
the second part the gradient of the class score yc (before the softmax func-
tion) with respect to the feature map value fLi at position (x, y). To obtain
a heatmap from this, a weighted combination of activation maps is per-
formed:

MGrad-CAM
c (x, y) =

∑
i

αcif
L
i (x, y) (42)

By passing the linear combination through the ReLU activation function,
we can additionally assure that only positive influences for the class c are
taken into account.

Comparing equations 40 and 42, we can see that in case wci = αci the maps
for CAM MCAM

c and Grad-CAM MGrad-CAM
c are identical. The authors

proved that Grad-CAM is a generalization of CAM to arbitrary CNN-based
architectures [30].

4.6 Guided Grad-CAM

Visualizations made with Grad-CAM can localize important regions in the
input image but lack the ability to show fine-grained features like with De-
convolution or Guided Backpropagation. Therefore, Selvaraju et al also
proposed a modification of their Grad-CAM method, called Guided Grad-
CAM [30].
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Figure 32: Results of Guided Backpropagation, Grad-CAM and Guided Grad-
CAM [30]

For example, in figure 32 (c) the Grad-CAM visualization shows the region
that contributes most to the decision ’Cat’. But it remains unclear which
features in this region influenced this decision. With Guided Grad-CAM
the features in this region are highlighted (see figure 32 (d)), e.g. showing
stripes on the cat’s fur.

The feature maps of the last convolutional layer are used to obtain the
Grad-CAM heatmap, while Guided Backpropagation is applied in the backward-
pass of the CNN to obtain features from the last fully-connected layer.
Then, the Grad-CAM heatmap MGrad-CAM

c is upsampled to the size of the
input image and element-wisely multiplied with the Guided Backpropaga-
tion features. The result shows fine-grained features only in those regions
that are most discriminative for a given category, e.g. ’Cat’.
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5 Implementation

In the application domain of oil and gas exploration, CNNs start to be used
by the domain experts for classification purposes which lead to the hypoth-
esis that the previously described visualization methods can also increase
the understanding of and the trust in the achieved results here. In order to
conduct experiments on seismic data, the algorithms had to be integrated
into the existing DeepGeo13 platform. In this chapter, the DeepGeo frame-
work and the implementation of the visualization algorithms and the de-
sign of the new visualization tool called DeepVis will be described in detail.

5.1 DeepGeo

As user-driven classification approaches still needed a lot of manual inter-
action, members of the oil and gas industry started using deep learning
to automate the seismic classification process. As part of the work in the
VRGeo Consortium14, the machine learning platform DeepGeo was created
to run distributed machine learning tasks from a web interface and make
neural network applications usable also for non-experts in this field.

DeepGeo consists of a scalable web interface from which Docker 15 con-
tainers, called jobs, can be started and managed. Every job can contain
arbitrary code and can execute a variety of tasks like creating a training set,
training a CNN or letting a CNN predict labels for given input data. In
order to make CNN visualizations usable for both deep learning experts
and non-experts, the visualization tool written as part of this master thesis
is built on top of the DeepGeo framework.

One main application of DeepGeo is to view seismic datasets in a common
internet browser. For this, DeepGeo includes a three-dimensional viewer
in which volumetric seismic data can be displayed and labelled to mark
visible seismic features like faults or channels. These annotations can then
be used for training set generation. Figure 33 shows a three-dimensional
view of the F3 dataset in DeepGeo with several annotations visible on the
inline slice in green and red.

13https://www.vrgeo.org/index.php?id=639
14https://www.vrgeo.org
15https://www.docker.com/
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Figure 33: 3D view of F3 dataset in DeepGeo

So far, DeepGeo has the ability to run arbitrary code in a job that runs as a
Docker container. Using the built-in DeepGeo API, a job can communicate
with the DeepGeo server to save or edit volumes and slices. A job that
runs a CNN on a given dataset can predict seismic features like faults or
channels and store these as annotations in the DeepGeo database. Thus,
only the input to the neural network and its outputs are known to a user.
If the results are not satisfactory, a user might not be able to identify the
reason for this bad performance as a CNN works like a black-box and does
not reveal any information about its decision making. DeepVis fills this gap
and tries to make deep learning and its decisions explainable.

5.2 Algorithms

For the implementation of the visualization algorithms from section 4 the
Tensorflow framework has been used. Tensorflow16 is a widely used open-
source machine learning framework for a range of deep learning tasks.
It provides definitions for neural network components like convolutional,
max pooling and fully-connected layers and has several learning and opti-
mization algorithms included. Also, Tensorflow handles the usage of one
or several GPUs in order to make use of parallelizable operations and speed
up the training and inference process. With Tensorflow users can concen-
trate on optimizing their neural network architectures instead of imple-
menting every detail on their own.

16https://www.tensorflow.org/
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Activation Maximization

Algorithm 1 shows the implementation of the Activation Maximization
method in Python code. The function receives a tensor object from Ten-
sorflow which represents a layer of the CNN, the number of iterations to
repeat the optimization process and the regularization parameters l2_decay,
gauss_sigma and gauss_every.

In line 2, the network with input (X) and output (Y) layer and logits (which
describe the output of the last fully-connected layer prior to the softmax
function) as well as several additional variables like input image shape or
Tensorflow session object is obtained with the method get_network(). Fol-
lowing that, a random input image with values in a range of [0.45; 0.55] is
initialized, as input images are normalized between 0 and 1. The gradients
of the given layer tensor with respect to the input image X are computed
with Tensorflow’s tf.gradients() method and afterwards multiplied with a
step size of gradient.std()−1 which has proven to give a fast convergence.
The input image is updated on line 13 and depending on the parameters,
regularization is applied.

Algorithm 1 Activation Maximization

1 def AM (tensor, iterations, l2_decay, gauss_sigma, gauss_every):
2 net = get_network()
3 num_features = get_num_features(tensor)
4 am_images = [np.random.uniform(0.45, 0.55, net.input_image_shape)

�

5 for n in range(num_features)]
6 losses = [tf.reduce_mean(tensor[..., n]) for n in range(num_features)]
7 gradients = [tf.gradients(losses[n], net.X) for n in range(num_features)]
8 for n in range(num_features):
9 for i in range(iterations):

10 # perform gradient ascent
11 gradient = net.session.run(gradients[n], feed_dict={net.X: [am_images[n]]})
12 step_size = 1.0 / (gradient.std() + 1e−8)
13 am_images[n] += step_size ∗ gradient
14 # apply regularization
15 am_images[n] = (1.0 − l2_decay) ∗ am_images[n]
16 if i % gauss_every == 0:
17 am_images[n] = gaussian_filter(am_images[n], gauss_sigma)
18 return am_images

The results of the Activation Maximization algorithm, as well as of ev-
ery other algorithm described in this section, are not normalized yet and
should be converted to bytes (uint8) in a range between 0 and 255 before
saving them as an image.
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Figure 34: Results of Activation Maximization on Inception V3 with no regular-
ization (top) and Gaussian blur regularization with gauss_every = 10
and gauss_sigma = 0.5 (bottom)

Activation Maximization can reveal concepts learned by a neural network
by creating optimal input images for every neuron or class. Nevertheless,
one disadvantage of Activation Maximization is the poor interpretability
of the synthesized results for complex objects. In figure 34, the optimal
input images for four classes (daisy, cat, traffic light, mountain bike) are
shown with no regularization in the upper row and Gaussian blur with
gauss_sigma = 0.5 and gauss_every = 10 in the lower row. For example,
the AM results for the class daisy show some flower-like patterns and in
the bottom image for class mountain bike parts of a wheel are recognizable.
Although the regularization changes the appearance of the images slightly,
they remain very hard to interpret and do not resemble real-life examples
of the input classes. With the help of a Deep Generative Network (DGN)
the results can be forced to look more realistic [25].

Backpropagation and gradients

Deconvolution and Guided Backpropagation rely on a backward-pass through
the network with modified gradients after the ReLU function. Therefore,
they use the same method (see algorithm 2) which uses a tensor object and
an input_image as parameters. In the backward-pass the gradients of the
tensor object with respect to the input image are computed.
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Algorithm 2 Backpropagation

1 def Backprop (tensor, input_image):
2 net = get_network()
3 num_features = get_num_features(tensor)
4 # perform backpropagation via gradients
5 gradients = [tf.gradients(tensor[..., n], net.X)[0]

�

6 for n in range(num_features)]
7 backprop_images = [net.session.run(gradients[n], feed_dict={net.X: [input_image]})

�

8 for n in range(num_features)]
9 return backprop_images

In the backpropagation process, the gradient calculation for the ReLU func-
tion has to be modified in order to create Deconvolution or Guided Back-
propagation results. Therefore, algorithm 3 shows the custom gradient cal-
culation methods for Deconvolution and Guided Backpropagation. Also,
the initialization of the Tensorflow graph with modified gradients is listed
in the method initialize_graph_with_relu().

Algorithm 3 Custom gradients for ReLU

1 @ops.RegisterGradient(’DeconvRelu’)
2 def _DeconvReluGrad(op, gradient):
3 # define custom gradient for ReLU (Deconvolution)
4 return tf.where(gradient > 0.0, gradient, tf.zeros(tf.shape(gradient)))
5
6 @ops.RegisterGradient(’GuidedRelu’)
7 def _GuidedReluGrad(op, gradient):
8 # define custom gradient for ReLU (Guided Backpropagation & Guided Grad−CAM)
9 return tf.where(gradient > 0.0, gen_nn_ops.relu_grad(gradient, op.outputs[0]),

�

10 tf.zeros_like(gradient))
11
12 def initialize_graph_with_relu(relu):
13 net = get_network()
14 with net.graph.gradient_override_map({’Relu’: relu}):
15 saver = tf.train.import_meta_graph(net.model_file + ’.meta’)
16 saver.restore(net.session, net.model_file)

Deconvolution

To apply the Deconvolution method to an input image, the network graph
has to be initialized with the DeconvRelu gradient from algorithm 3. Then,
the Backpropagation method is called to generate the Deconvolution results
in the backward-pass (see algorithm 4).

Algorithm 4 Deconvolution

1 def Deconv (tensor, input_image):
2 initialize_graph_with_relu(’DeconvRelu’)
3 return Backprop(tensor, input_image)
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Figure 35 shows 18 randomly chosen features of convolutional layer conv_3_3
from VGG16 for an input image showing a daisy. In each feature the input
image can be recognized as the most important shapes and edges have been
detected by the CNN.

Figure 35: Results of Deconvolution on layer Conv_3_3 of VGG16

For the last layer of a CNN, the Deconvolution method generates a recon-
struction of the input image with all its detected features. The original in-
put images (top row) and their corresponding Deconvolution reconstruc-
tion are depicted in figure 36. The input images are clearly visible in the
reconstructions, proving that the network has learned important features
for each class.

Figure 36: Results of Deconvolution on last layer of VGG16

Guided Backpropagation

Similar to Deconvolution, the Guided Backpropagation algorithm, depicted
in algorithm 5, first initializes the Tensorflow graph with the custom gra-
dient for the ReLU function in line 2 and then performs backpropagation
with these modified gradients.
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Algorithm 5 Guided Backpropagation

1 def GuidedBackprop (tensor, input_image):
2 initialize_graph_with_relu(’GuidedRelu’)
3 return Backprop(tensor, input_image)

With Guided Backpropagation, not the whole input image but only the
most discriminative features are reconstructed, resulting in much finer out-
put images than with Deconvolution. The results of Guided Backpropa-
gation on the last layer for six different input images are shown in figure
37.

Figure 37: Results of Guided Backpropagation on last layer of VGG16

Grad-CAM

The Grad-CAM algorithm (see algorithm 6) takes a tensor object, the in-
put_image as array and the corresponding input_label as arguments. In line
3, the gradients of the logits are computed with respect to the input image.
Note, that only the logits of the true label are considered, as we only want
to obtain the most discriminative regions for this class. Then, a constant
padding is added to the gradients to prevent high activations at the bor-
der of the image. In lines 8 and 9 the padded gradients are average pooled,
summed up and passed through a ReLU function, as we are only interested
in positive influences on our class probability. Because dimensions of the
resulting heatmap equal the tensor’s dimensions, the map has to be scaled
up to the input image dimensions (lines 11-12).
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Algorithm 6 Grad-CAM

1 def GradCAM (tensor, input_image, input_label):
2 net = get_network()
3 gradient_conv = tf.gradients(net.logits[..., np.argmax(input_label)], tensor)[0]
4 # pad gradients with zero to remove high activations on the border
5 paddings = tf.constant([[0, 0], [0, 1], [0, 1], [0, 0]])
6 gradient_pad = tf.pad(gradient_conv, paddings, ’constant’, constant_values=0)
7 # perform global average pooling
8 partial_lin = tf.nn.avg_pool(gradient_pad, [1, 2, 2, 1], [1, 1, 1, 1], ’valid’)
9 heat_map = tf.nn.relu(tf.reduce_sum(tensor ∗ partial_lin, axis = 3, keepdims = True))

10 # resize heat map to fit input image size
11 resized_heat_map = tf.image.resize_bilinear(heat_map, np.shape(input_image),

�

12 align_corners = True)
13 grad_cam = net.session.run(resized_heat_map, feed_dict={net.X: [input_image]})
14 return grad_cam

Figure 38: Results of Grad-CAM on last convolutional layer of Inception V3

With Grad-CAM the ability of a CNN to locate objects can be visualized.
In figure 38 the heatmaps obtained by Grad-CAM are depicted on top of
six input images for the Inception V3 architecture. The results show that
the network is not only able to recognize certain objects but also to locate
them in the image. Note, that for example in the third image, showing
two cyclists, Inception V3 can locate both bikes separately. In figure 39, a
comparison between the classes cat and dog is presented. The left column
shows the Grad-CAM results for the class dog, while in the right column
the heatmaps for cat are visualized. We can see that the important regions
change from dog to cat, showing us that Inception V3 can clearly distin-
guish both classes and is able to locate them.
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Figure 39: Comparison of Grad-CAM heatmaps for classes cat (right) and dog
(left) on Inception V3

Guided Grad-CAM

To make use of Grad-CAM’s location abilities and the fine-graded features
obtained by Guided Backpropagation, the Guided Grad-CAM algorithm
was introduced in section 4.6. The implemented method (see algorithm 7)
takes the same arguments as the Grad-CAM algorithm, being a tensor ob-
ject, the input_image and the corresponding input_label. At the beginning,
Guided Backpropgation is performed (lines 3-5) , followed by the Grad-
CAM method (lines 6-12). In line 15, the results of both methods are com-
bined by element-wise multiplication to obtain the final results of Guided
Grad-CAM.
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Algorithm 7 Guided Grad-CAM

1 def GuidedGradCAM (tensor, input_image, input_label):
2 net = get_network()
3 # Guided backpropagation
4 initialize_graph_with_relu(’GuidedRelu’)
5 gradient_X = tf.gradients(net.logits[:, np.argmax(input_label)], net.X)[0]
6 # Grad−CAM
7 gradient_conv = tf.gradients(net.logits[..., np.argmax(input_label)], tensor)[0]
8 paddings = tf.constant([[0, 0], [0, 1], [0, 1], [0, 0]])
9 gradient_pad = tf.pad(gradient_conv, paddings, ’constant’, constant_values=0)

10 partial_lin = tf.nn.avg_pool(gradient_pad, [1, 2, 2, 1], [1, 1, 1, 1], ’valid’)
11 heat_map = tf.nn.relu(tf.reduce_sum(tensor ∗ partial_lin, axis = 3, keepdims = True))
12 resized_heat_map = tf.image.resize_bilinear(heat_map, np.shape(input_image),

�

13 align_corners = True)
14 # Combine both methods by element−wise multiplication
15 guided_grad_cam = tf.multiply(gradient_X, resized_heat_map)
16 result = net.session.run(guided_grad_cam, feed_dict={net.X: [input_image]})
17 return result

Guided Grad-CAM reveals detailed features only in regions that are im-
portant for the given class. Six input images and their corresponding visu-
alization are depicted in figure 40. Note, that the lion for example seems to
be recognized most from his eyes and nose, ignoring its mane completely.

Figure 40: Results of Guided Grad-CAM on the last convolutional layer of Incep-
tion V3

Again, we can use Guided Grad-CAM to compare the detection of the
classes dog and cat as depicted in figure 41. Once more, the visualizations
depict that Inception V3 can distinguish between the dog’s and the cat’s
body. This time, not only the animal’s faces are highlighted, but also the
features leading to the classification results are visible. Most animals seem
to be detected by their faces as this is the strongest feature in the Guided
Grad-CAM results.
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Figure 41: Comparison of Guided Grad-CAM results for classes cat (right) and
dog (middle) on Inception V3. The original input images are shown on
the left.

5.3 DeepVis

To make the previously mentioned visualization methods accessible and
usable from the DeepGeo web interface, the visualization tool DeepVis was
created as part of this thesis. The tool consists of several parts that will be
explained in this section.

DeepVis Library

The DeepVis library is a Python library that implements all visualization
methods listed in section 5.2 and handles calls to the DeepVis API. Ev-
ery DeepGeo job can include the library to access visualization methods
or send data to the API without explicitly implementing the visualization
algorithms or the HTTP requests.

DeepGeo Job

A DeepGeo job can comprise arbitrary functionality that runs inside of a
Docker container. Nevertheless, it is necessary to implement some spe-
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cific lines of code in order to use this job with DeepVis. To map the whole
process of working with CNNs in DeepGeo, the job must include the gen-
eration of training data, the training of the CNN and an inference step.

DeepVis 
Database 

DeepGeo Job 

Generation of  
training data

Training of 
network 

Inference 

Visualization 
DeepVis UI

API 

Figure 42: Connection of DeepVis database, DeepVis UI and DeepGeo jobs
through DeepVis API

The connections between a DeepGeo job, the DeepVis API with its database
and the DeepVis UI are depicted in figure 42. When creating training data,
the obtained samples have to be saved in the DeepVis database which can
be done by sending them to the corresponding endpoint of the DeepVis
API. In the training step, only the network architecture needs to be saved in
DeepVis to display the network in the UI. There must also be a visualization
step in which visualizations for a given visualization method are created
and saved via the DeepVis API.

DeepVis UI

The DeepVIs UI is a tool integrated into DeepGeo to create and view visu-
alizations of CNN features. Figure 43 shows the user interface while using
the Grad-CAM method. In the upper left corner, details about the trained
CNN and its training data are listed. Beneath, the visualization method
can be chosen and input images from the training data can be selected. The
lower left corner contains a log for the visualization job. The architecture
of the CNN is loaded from the database and displayed in 3D via WebGL in
the upper right. Convolutional layers are depicted in blue, max pooling in
yellow, fully-connected layers in red and dropout in black. The input is by
default shown on the left of the network, the output on the right. Each vi-
sualization method generates results only for pre-defined layers. When the
user clicks on such a layer, an enlarged version of the result image is being
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revealed in the lower right corner of DeepVis UI. Below the architecture,
the selected input images are listed with the CNN’s prediction beneath ev-
ery image.

Figure 43: User interface of DeepVis

During the evaluation of DeepVis (see chapter 6.5), members of the VR-
Geo Consortium mentioned the need of visualizations for CNNs contain-
ing 3D convolutions, as 3D CNNs are currently used a lot in the industry.
Therefore, support for 3D CNNs was added to DeepVis by using the slicing
approach already known from visualizing the 3D seismic datasets.

Figure 44: Selection of input images with depth slider in the upper right
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Training datasets that use a patch size with a depth of more than 1 (e.g.
32 × 32 × 5) can be viewed slice per slice by using a slider controlling the
depth offset. The selection of input images in DeepVis UI is shown in fig-
ure 44. After changing the value of the slider in the upper right, all input
images are updated dynamically to show the corresponding slice of the in-
put volume. By default, the middle slice is shown as it always contains the
labelled seismic feature. For input data that has a size of 32 × 32 × 5 e.g.,
the depth offset ranges between 0 and 4, thus the default slice is 2.

Figure 45: All 32 slices of a 32× 32× 32 input volume

In figure 45 all 32 slices of a 32×32×32 input volume are listed in ascending
order from depth offset 0 to 31. The evolution of the seismic can easily be
observed, showing an anomalous region appearing in rows 2 and 3.

After the visualization process for the CNN is finished, the results are added
to the 3D view of the network architecture and can be selected. Similar to
the input image selection, the result images e.g. from Grad-CAM can be
viewed slice by slice if they are three-dimensional. Otherwise, the depth
offset slider is hidden and the single 2D image is shown.
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6 Evaluation

In order to evaluate the presented visualization methods for their usage in
seismic interpretation, experiments have been conducted in the DeepGeo
framework. For this, different CNN architectures had to be trained with
different training datasets to subsequently analyze the visualization results
from the implemented visualization methods presented in chapter 4. The
use of these visualizations and the created tool will be discussed with deep
learning experts and members of the oil and gas industry in section 6.5.
Then, optimization possibilities of training data and network architecture
derived from these visualizations will be evaluated in section 6.6 and dis-
cussed in the last section of this chapter.

6.1 CNN Architectures

For evaluation, several different CNN architectures have been used. The
first one is called CNN7 and was adopted from Ying Jiang’s master thesis
[15]. It consists of seven layers plus input and output layer. The individual
layers are listed in table 1. Depending on the training set, the input layer
can either accept input sizes of 32× 32× 1 or 32× 32× 5. CNN7 comprises
three 2D convolutional layers with a kernel size of 3 × 3 each, a stride of
1 and 32 or, respectively, 64 feature maps per layer. The first and the third
convolutional layer are followed by a 2D max pooling with a kernel size
of 2 × 2 and stride 2 to decrease the size of the feature maps. After that,
a fully-connected layer with 512 neurons and a dropout of 50% follows.
At the end of the network, the output layer with N neurons (N equals the
number of classes the CNN is trained on) is followed by a softmax function
that delivers the final classification result of CNN7.

Operation Details Output
Input Data preprocessing 32x32x1

or 32x32x5
Layer 1 2D Convolution 3x3, 32 feature maps, stride 1 32x32x32
Layer 2 2D Max Pooling 2x2 kernel, stride 2 16x16x32
Layer 3 2D Convolution 3x3, 64 feature maps, stride 1 16x16x64
Layer 4 2D Convolution 3x3, 64 feature maps, stride 1 16x16x64
Layer 5 2D Max Pooling 2x2 kernel, stride 2 8x8x64
Layer 6 Fully-Connected 512 neurons 512
Layer 7 Dropout Dropout rate 50% 512
Output Fully-Connected N neurons N

Table 1: Architecture of CNN7
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Also, a three-dimensional CNN, called CNN12, was used for evaluation.
The input of CNN12 is a volume of 32 × 32 × 32 pixels. As listed in table
2, the architecture consists of 12 layers, including five 3D convolutional
layers with a kernel size of 3× 3× 3, a stride of 1 and 32, 64 or 128 feature
maps. Three of these convolutional layers are followed by 3D max pooling
layers with a kernel size of 2 × 2 × 2 and stride 2. Then, CNN12 uses two
fully-connected layers with 512 neurons and a dropout rate of 50% each.
Eventually, the output layer consists of N neurons and uses the softmax
function to compute the final prediction of the network.

Operation Details Output
Input Data preprocessing 32x32x32
Layer 1 3D Convolution 3x3x3, 32 kernels, Stride 1 32x32x32x32
Layer 2 3D Max Pooling 2x2x2 kernel, Stride 2 16x16x16x32
Layer 3 3D Convolution 3x3x3, 64 kernels, Stride 1 16x16x16x64
Layer 4 3D Convolution 3x3x3, 64 kernels, Stride 1 16x16x16x64
Layer 5 3D Max Pooling 2x2x2 kernel, Stride 2 8x8x8x64
Layer 6 3D Convolution 3x3x3, 128 kernels, Stride 1 8x8x8x128
Layer 7 3D Convolution 3x3x3, 128 kernels, Stride 1 8x8x8x128
Layer 8 3D Max Pooling 2x2x2 kernel, Stride 2 4x4x4x128
Layer 9 Fully-Connected 512 neurons 512
Layer 10 Dropout Dropout rate 50% 512
Layer 11 Fully-Connected 512 neurons 512
Layer 12 Dropout Dropout rate 50% 512
Output Fully-Connected N neurons N

Table 2: Architecture of CNN12

Neural network with more layers usually contain a larger number of pa-
rameters that have to be optimized during training. The number of pa-
rameters for CNN7 and CNN12 are listed in table 3. CNN7 has about 2.2
million parameters for both input sizes, while CNN12 needs more than 5.3
million parameters. The high number of parameters for CNN12 leads to an
extension of training time as both the size of the input data and the param-
eters to be optimized have been increased.

Architecture Input Size Parameters
CNN7 32x32x1 2.2 million
CNN7 32x32x5 2.2 million
CNN12 32x32x32 5.3 million

Table 3: Number of trainable parameters for each CNN architecture and input size
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6.2 Training Data

A crucial part of training a CNN is the gathering or creation of training
examples. For our experiments, the public available seismic datasets F3 [7]
and Parihaka [21] have been used to detect seismic features.

F3

The F3 dataset has many areas containing faults, of which several are clearly
visible. Nevertheless, some areas contain many small faults with very little
space between them. In figure 46 an example from inline slice 100 of labels
for fault (green) and background (red) is shown. There is a major fault in the
left half of this slice as well as many smaller faults in the lower right.

Figure 46: Annotations of classes fault (green) and background (red) on inline slice
100 in F3 dataset
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Figure 47: Annotations of classes fault (green) and background (red) on inline slice
325 in F3 dataset

On inline slice 325 (see figure 47) the major fault has vanished, but still
there a many smaller faults present. There is also a salt dome present at the
bottom of the dataset, which is not labelled, because the used patch size of
32× 32 pixels is too small for detecting such a large-scale structure.

Parihaka

Compared to F3, the Parihaka dataset is geophysically much more com-
plex. It also contains some large fault structures visible on the right in
figure 48, as well as differently sized channel structures that are difficult
to interpret. Because some channels are too large to be covered by a patch
size of 32 × 32, only the lower boundaries of channels have been labelled.
As those boundaries are not clearly distinguishable from the background,
the annotation brush size has been chosen larger than for faults. Similar
to F3, some regions without seismic features are labelled in red comprising
the background class that contains neither faults nor channels.

Figure 48: Annotations of classes fault (green), channel (blue) and background (red)
on crossline slice 563 in Parihaka dataset
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6.3 Classification Results

After training each CNN for 10 epochs, the validation accuracy of all archi-
tectures reached more than 99%. An epoch describes a full training cycle on
the training set where every training sample is passed to the network once.
Due to the fact that seismic data has to be interpreted and thus not every
pixel of a slice can be labelled safely, the labelled training data is not com-
plete. Also, the validation set size has been chosen very small with 1-3% of
the whole dataset to have more samples left for training, as the amount of
labelled seismic data is very limited.

F3

An example of the classification results from CNN7 with input size 32 ×
32× 1 is depicted in figure 49. Apparently, the network has learned to dis-
tinguish faults from background, but the detected fault areas are not precise
enough to be further used in the interpretation process. Some faults even
have coalesced which renders these specific results useless for creating a
fault model.

Figure 49: Detection of faults on inline slice 100 in F3 dataset with CNN7 and input
patch of 32x32x1

For comparison, the classification results for CNN7 with input size 32×32×
5 and CNN12 are depicted in figures 50 and 51 respectively. The quality of
the results leads to the conclusion that for now CNN7 with an input size
of 32 × 32 × 1 is best suited for detecting faults in F3, because the size
of an annotation around a fault structure seems to increase proportionally
with the depth of input. Nevertheless, the classifications contain a lot of

53



false-positives and are too coarse to be used in the seismic interpretation
workflow.

Figure 50: Detection of faults on inline slice 100 in F3 dataset with CNN7 and input
patch of 32x32x5

Figure 51: Detection of faults on inline slice 100 in F3 dataset with CNN12 and
input patch of 32x32x32

Parihaka

In Parihaka, the classification results are even coarser than in F3. Figure 52
shows the large blue areas predicted as channels and also faults (green) are
classified too wide. The classification results with an input size of 32×32×5
and CNN12 are similar and far from being usable. As Parihaka is a geologi-
cally much more complex dataset than F3, this result was expectable. Since
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only few regions can be interpreted and labelled with high confidence, the
training data for Parihaka has bad quality.

Figure 52: Detection of faults (green) and channels (blue) on crossline slice 563 in
Parihaka dataset with CNN7 and input patch of 32x32x1

6.4 Visualization Results

In order to analyze and understand the decisions of the CNNs, the Deep-
Vis tool was used to create visualizations with Activation Maximization,
Deconvolution, Guided Backpropagation, Grad-CAM and Guided Grad-
CAM.

6.4.1 F3

Activation Maximization

Activation Maximization was applied to all convolutional layers in CNN7
to synthesize optimal input images for each neuron. Figures 53a, 53b and
53c show the resulting input images for every neuron of the given convolu-
tional layer. In figure 53d the optimal input for each class is depicted, with
fault on the left and no fault on the right.
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(a) (b) (c)

(d)

Figure 53: Results of Activation Maximization on layers 1, 3 and 4 (a)-(c) and on
the final layer (d) for classes fault (left) and no fault (right) in F3 dataset
(CNN7, input size 32× 32× 1)

In figures 53a, 53b and 53c many Gabor filters are visible, which is com-
mon for convolutional neural networks. Gabor filters are used for texture
analysis in image processing, analyzing specific frequencies in different di-
rections in a local region of an image. Also, a lot of checkerboard patterns
have been visualized, especially in figure 53b. These artifacts originate
from inverting the max pooling layers and do not represent any patterns
maximizing a neuron’s activation.

In the optimal fault input image (figure 53d, left), several spots with high
gradients are recognizable on the vertical axis in the center. The network
has learned to react to horizontal gradients which indicates a fault in most
cases. Nevertheless, the input for no fault appears noisy and has very little
structure.

Deconvolution

The Deconvolution method is able to reconstruct features from the input
image that convolutional layers react to. The results for five input images
from class fault are depicted in figures 54a to 54e. Similar to the optimal
class image from Activation Maximization, the Deconvolution results re-
veal a higher attention to the center of the image in case of faults.

56



(a) (b) (c) (d) (e)

Figure 54: Results of Deconvolution on the final layer (bottom) for class fault and
corresponding input images (top) in F3 dataset (CNN7, input size 32×
32× 1)

(a) (b) (c) (d) (e)

Figure 55: Results of Deconvolution on the final layer (bottom) for class no fault
and corresponding input images (top) in F3 dataset (CNN7, input size
32× 32× 1)

Visualization results for the no fault class (see figures 55a to 55e) show that
background samples seem to be detected through straight lines that run
almost horizontally.

Guided Backpropagation

The visualizations generated by Guided Backpropagation (see figure 56)
look similar to Deconvolution, although they are more intense.
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(a) (b) (c) (d) (e)

Figure 56: Results of Guided Backpropagation on the final layer (bottom) for class
fault and corresponding input images (top) in F3 dataset (CNN7, input
size 32× 32× 1)

(a) (b) (c) (d) (e)

Figure 57: Results of Guided Backpropagation on the final layer (bottom) for class
no fault and corresponding input images (top) in F3 dataset (CNN7, in-
put size 32× 32× 1)

Especially the images obtained from no fault samples (see figure 57) show
some differences to Deconvolution as there are two images (figures 57a and
57d) that possess very few visible features. Possibly, these samples have a
larger distance to the mean of no fault samples and therefore the features
are weaker.

Grad-CAM

The Grad-CAM method creates a heatmap for every input image showing
the most discriminative regions for the predicted class. Figures 58a to 58e
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confirm the assumption that the CNNs look at high horizontal gradients in
the center of the image. Nevertheless, the visualizations reveal also many
activations apart from the center. As we use a sliding-window approach to
classify the center pixel of each 32×32 sample, only faults that actually run
through this pixel should be detected.

(a) (b) (c) (d) (e)

Figure 58: Results of Grad-CAM on the last convolutional layer (bottom) for class
fault and corresponding input images (top) in F3 dataset (CNN7, input
size 32× 32× 1)

The Grad-CAM results of no fault input images (see figures 59a to 59e) show
discriminative regions spread across the whole image.

(a) (b) (c) (d) (e)

Figure 59: Results of Grad-CAM on the last convolutional layer (bottom) for class
no fault and corresponding input images (top) in F3 dataset (CNN7, in-
put size 32× 32× 1)
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Guided Grad-CAM

The visualization results from Guided Grad-CAM (see figures 60 and 61)
show fine-graded features in the most discriminative regions for the pre-
dicted class. Obviously, the results are similar to Guided Backpropagation
but limited to the vertical axis in the center of the image in case of class fault
(see figures 60a to 60e) or to various regions spread across the whole image
for class no fault (see figures 61a to 61e).

(a) (b) (c) (d) (e)

Figure 60: Results of Guided Grad-CAM on the last convolutional layer (bot-
tom) for class fault and corresponding input images (top) in F3 dataset
(CNN7, input size 32× 32× 1)

(a) (b) (c) (d) (e)

Figure 61: Results of Guided Grad-CAM on the last convolutional layer (bottom)
for class no fault and corresponding input images (top) in F3 dataset
(CNN7, input size 32× 32× 1)
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6.4.2 Parihaka

Activation Maximization

Also in the Parihaka dataset, Activation Maximization reveals Gabor filters
in the convolutional layers (see figures 62a, 62b and 62c).

(a) (b) (c)

(d)

Figure 62: Results of Activation Maximization on layers 1, 3 and 4 (a)-(c) and on
the final layer (d) for classes fault (left), background (middle) and channel
(right) in Parihaka dataset (CNN7, input size 32× 32× 1)

The optimal images for the classes fault, background and channel (see figure
62d from left to right) cannot easily be interpreted. A fault structure is
not visible in the first image, while the optimal background image shows
diagonal lines instead of horizontal lines. In the channel image a ’V’ shape
is recognizable, which usually resembles most kinds of channels.

Deconvolution

The Deconvolution for fault and background input images in Parihaka (see
appendix A, figures 86 and 87 respectively) looks similar to the results from
F3. In the reconstructions for channels depicted in figure 63, the diagonal
lines forming the boundary of a channel are slightly visible.
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(a) (b) (c) (d) (e)

Figure 63: Results of Deconvolution on the final layer (bottom) for class channel
and corresponding input images (top) in Parihaka dataset (CNN7, in-
put size 32× 32× 1)

Guided Backpropagation

The use of Guided Backpropagation in Parihaka reveals more visible bound-
aries for channel structures shown in figure 64. For fault and background
input images (see appendix A, figures 88 and 89) the results again do not
differ significantly from those in F3.

(a) (b) (c) (d) (e)

Figure 64: Results of Guided Backpropagation on the final layer (bottom) for
class channel and corresponding input images (top) in Parihaka dataset
(CNN7, input size 32× 32× 1)
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Grad-CAM

Grad-CAM shows that the important regions for the class fault lie mostly
on the center vertical axis, although figure 65d reveals that the CNN also
reacts to fault regions right of the center.

(a) (b) (c) (d) (e)

Figure 65: Results of Grad-CAM on the last convolutional layer (bottom) for class
fault and corresponding input images (top) in Parihaka dataset (CNN7,
input size 32× 32× 1)

The most discriminative regions for channels represented in figure 66 are
not always intuitive, as they often are positioned apart from the actual
channel boundary in the input.

(a) (b) (c) (d) (e)

Figure 66: Results of Grad-CAM on the last convolutional layer (bottom) for
class channel and corresponding input images (top) in Parihaka dataset
(CNN7, input size 32× 32× 1)

63



(a) (b) (c) (d) (e)

Figure 67: Results of Grad-CAM on the last convolutional layer (bottom) for class
background and corresponding input images (top) in Parihaka dataset
(CNN7, input size 32× 32× 1)

Guided Grad-CAM

With Guided Grad-CAM especially channels are recognizable in the result-
ing images depicted in figure 69. Although Grad-CAM shows regions in
the heatmap that do not lie on the channel boundary, the combination with
Guided Backpropagation leads to sharp diagonal lines and masked out hor-
izontal lines.

(a) (b) (c) (d) (e)

Figure 68: Results of Guided Grad-CAM on the last convolutional layer (bottom)
for class fault and corresponding input images (top) in Parihaka dataset
(CNN7, input size 32× 32× 1)
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(a) (b) (c) (d) (e)

Figure 69: Results of Guided Grad-CAM on the last convolutional layer (bottom)
for class channel and corresponding input images (top) in Parihaka
dataset (CNN7, input size 32× 32× 1)

Guided Grad-CAM also makes the horizontal lines visible, that the CNNs
classify as background. Figure 70 demonstrates that only some of the lines
from the input image are important for the classification.

(a) (b) (c) (d) (e)

Figure 70: Results of Guided Grad-CAM on the last convolutional layer (bottom)
for class background and corresponding input images (top) in Parihaka
dataset (CNN7, input size 32× 32× 1)

6.5 Experts Feedback

After presenting the results of all introduced visualization methods, the
quality and value of the visualizations in the context of seismic interpreta-
tion has to be evaluated. Therefore, a feedback session with several deep
learning experts from Fraunhofer IAIS was conducted, in which the Deep-
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Vis tool and the visualization results from section 6.4 have been presented
and discussed.

For Activation Maximization the experts mentioned the appearance of Ga-
bor filters in the first layers as indicator for the successful training of the
CNNs. However, they agreed that the optimal class images do not resem-
ble real-life examples and cannot be found in our available seismic datasets.

For Deconvolution and Guided Backpropagation results only the visual-
izations from the last layer were thought to be useful as they show high
activations in important regions especially for faults. At this point, there is
no real use of intermediate layer results because they do not contain much
visible information for our small black-and-white input images.

Grad-CAM and Guided Grad-CAM have been considered the most valu-
able methods because they deliver easily interpretable results by highlight-
ing important areas in the input images. These methods reveal if a CNN
has learned wrong concepts that might lead to false-positive classifications.
Also, both methods can confirm that a network precisely reacts to certain
features in the input and therefore strengthen the trust in the results.

In conclusion, the deep learning experts found DeepVis a helpful tool to
estimate the quality of training data and the actual accuracy of a trained
CNN. With methods like (Guided) Grad-CAM and Activation Maximiza-
tion the concepts learned by a network can be revealed and the adoption
to the training data can be estimated, which might expose that the network
has not been trained long enough for example.

A presentation of DeepVis to oil and gas experts from the VRGeo consor-
tium delivered more feedback especially concerning the way to use Deep-
Vis in DeepGeo. As many CNN experiments in the oil and gas industry are
conducted with 3D CNNs, the experts suggest support for this in Deep-
Vis, which was added at the beginning of evaluation to be able to compare
2D and 3D results. The feedback made clear that proper and high-quality
training data is the most crucial part in order to obtain useful seismic clas-
sification results with CNNs.

6.6 Optimizations derived from Visualizations

Resulting from the visualizations described in sections 6.4.1 and 6.4.2 and
the feedback collected from experts in deep learning and the oil and gas
industry, optimizations can be derived to improve the network’s accuracy
or performance.
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6.6.1 Training Data

Grad-CAM and Activation Maximization visualizations revealed, that the
network is trained to detect faults that lie in the center of the input image.
Nevertheless, there are also some samples with high activations in regions
apart from the center. In other words, the CNN detects not only the one
pixel lying exactly on the fault, but also many pixels left and right of the
actual true pixel.

As a consequence, the training data can be modified with additional no fault
annotations that are positioned close to the fault annotations. By doing this,
the CNN should learn to predict faults more precisely, which should also
be visible in the visualizations made by DeepVis.

(a) (b)

Figure 71: Example of original (a) and modified (b) annotations for classes fault
(green) and background (red) on inline slice 100 in F3 dataset

(a) (b)

Figure 72: Example of original (a) and modified (b) annotations for classes fault
(green) and background (red) on inline slice 325 in F3 dataset
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Figures 71 and 72 show comparisons of original and modified annotations
in F3. Now there are no fault annotations between fault annotations, espe-
cially visible in the lower halves of the images. Also, the fault annotations
have been modified to match the visible fault structure more precisely.

After training the CNN with the modified training data for 10 epochs, the
inference results (see figure 73) expose finer classifications of the faults.
Most faults are separated from their neighbouring faults and also the num-
ber of false-positive classifications has decreased especially in the salt dome
at the bottom of the slice.

Figure 73: Detection of faults on inline slice 100 in F3 dataset with CNN7 and input
patch of 32× 32× 1

In order to understand the improvements made by the new annotations,
visualizations have been performed on the trained network with DeepVis.

Activation Maximization

Activation Maximization still shows similar patterns for convolutional lay-
ers 1 to 3 (see figures 74a to 74c) but the optimal input images for every
class (see figure 74d) obtained from the logits reveal changes in the detec-
tion of faults and background. The left image presents the optimal input
for fault, with several transitions from black to white or vice versa on the
vertical axis in the center of the image while the boundary regions show
weak horizontal lines. The optimal input for no fault on the right represents
almost the opposite of the fault image, as high gradients are only visible
near the border while the center region is almost uniform.
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(a) (b) (c)

(d)

Figure 74: Improved results of Activation Maximization on layers 1, 3 and 4 (a)-(c)
and on the final layer (d) for classes fault (left) and no fault (right) in F3
dataset (CNN7, input size 32× 32× 1)

Deconvolution and Guided Backpropagation

Deconvolution and Guided Backpropagation present almost equal results
with the modified training data. The features in center regions are stronger
than previously and show higher contrast. The features reconstructed also
confirm the optimal class images from Activation Maximization, showing
high activations in the center for fault (see figure 75) and near the left and
right border for no fault inputs (see figure 76) using Deconvolution.

69



(a) (b) (c) (d) (e)

Figure 75: Improved results of Deconvolution on the final layer (bottom) for class
fault and corresponding input images (top) in F3 dataset (CNN7, input
size 32× 32× 1)

(a) (b) (c) (d) (e)

Figure 76: Improved results of Deconvolution on the final layer (bottom) for class
no fault and corresponding input images (top) in F3 dataset (CNN7, in-
put size 32× 32× 1)

Grad-CAM

The heatmaps created by Grad-CAM expose that the important regions for
classifying an input as fault lie completely on the vertical line through the
center of the image (see figure 77). Note, that in figure 77b only the center
fault is important for the decision, while the fault right to the center remains
unnoticed. As with the sliding-window approach, only the center pixel of
an input image is classified, this is the behaviour we want to evoke to get
finer classifications of faults.
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(a) (b) (c) (d) (e)

Figure 77: Improved results of Grad-CAM on the last convolutional layer (bot-
tom) for class fault and corresponding input images (top) in F3 dataset
(CNN7, input size 32× 32× 1)

With Grad-CAM we can see that the most discriminative regions for no
fault are apart from the center at the left and right border of the image. As
depicted in figure 78e, a sample containing off-center faults is classified as
no fault because there are no fault-like patterns in the center and therefore
only the boundary regions are considered.

(a) (b) (c) (d) (e)

Figure 78: Improved results of Grad-CAM on the last convolutional layer (bottom)
for class no fault and corresponding input images (top) in F3 dataset
(CNN7, input size 32× 32× 1)

Guided Grad-CAM

Visualizations of Guided Grad-CAM depicted in figures 79 and 80 also con-
firm the adaptation of CNN7 to the modified training data. Features lead-
ing to a fault classification (see figure 79) can only be found in the center
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region, while previously this area has been significantly wider. Opposed
to that, no fault classifications (see figure 80) are based on the whole image
except the vertical line through the center.

(a) (b) (c) (d) (e)

Figure 79: Improved results of Guided Grad-CAM on the last convolutional layer
(bottom) for class fault and corresponding input images (top) in F3
dataset (CNN7, input size 32× 32× 1)

(a) (b) (c) (d) (e)

Figure 80: Improved results of Guided Grad-CAM on the last convolutional layer
(bottom) for class no fault and corresponding input images (top) in F3
dataset (CNN7, input size 32× 32× 1)

6.6.2 Network Architecture

During visualization of CNN12, noisy results with Activation Maximiza-
tion visible in figure 81 were displayed in the higher convolutional layers
6 and 7. Most of the synthesized optimal input images show almost no
structure except from noisy checkerboard patterns.
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(a) (b)

Figure 81: Results of Activation Maximization for layer 6 (a) and 7(b) of CNN12

This leads to the assumption that 5 convolutional layers might be too much
for the classification of images with a size of 32 × 32 pixels. Therefore, the
architecture of CNN12 was adapted by removing layers 6,7 and 8 (2 con-
volutional, 1 max pooling layer). The classification results for CNN12 (left)
and its modified version (right) are depicted in figure 82 which disproves
the previously made assumption. The precision of the classified regions
has not improved but worsened as many fault classifications have become
larger and partly coalesced. To investigate the reasons for this misleading
deduction, we take a look into more visualizations of the two networks.

Figure 82: Classification results of CNN12 (left) and modified CNN12 (right)

A comparison between Activation Maximization results of CNN12 and
modified CNN12 (see figure 83) from layer 4, which is the last convolu-
tional layer in the modified architecture, reveals that the modified version
has lost many features in this layer although the noisy layers have been re-
moved. Also, many of the optimal input images for the modified network
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stay completely black, which is an indicator that the calculated gradients
are zero and therefore no optimization could be performed.

Figure 83: Results of Activation Maximization for layer 4 in CNN12 (left) and
modified CNN12 (right)

(a) (b) (c) (d)

Figure 84: Results of Grad-CAM for CNN12 (middle row) and modified CNN12
(bottom row) with four input images (upper row)

The comparison of Grad-CAM results for both network architectures de-
picted in figure 84 shows much finer highlighted regions for the modified
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network than for the original CNN12 with two more convolutional layers.
This is due to the fact that the feature map of the removed layers has only
half as much pixels per axis as the last feature map of the modified CNN12.
Therefore, the upsampling from 8× 8 to 32× 32 pixels is much coarser and
blurrier than from 16 × 16 pixels which results in a blurred and imprecise
heat map and makes no statement about the quality of the classification
results.

6.7 Discussion

By evaluating visualization results from seismic datasets made by Deep-
Vis, it was discovered that at least some of the implemented visualization
methods can be helpful to optimize the deep learning workflow for seismic
classification purposes. Heatmaps obtained by Grad-CAM demonstrated
that our CNNs reacted to fault features apart from the center. With this
gained knowledge the training data could be optimized to better match the
desired results and finally get more precise classifications.

The most valuable and impressive visualization method for users with or
without a deep learning background seems to be Grad-CAM as it gener-
ates easily interpretable heatmaps on top of every input image. In other
words, it highlights important regions for the predicted class directly in the
input image and therefore leads to an understanding of the concepts that
the CNN has learned. However, experiments with CNN12 revealed that
in many-layer networks with max pooling layers Grad-CAM can deliver
blurred and imprecise highlights that cover large areas of the image. This
is due to the fact that the heatmap is generated from the last layer and has
to be upsampled to match the input image dimensions. Thus, the use of
Grad-CAM makes sense for CNNs that downsample its feature maps only
a few times.

Activation Maximization syntehsizes optimal input images for every fea-
ture of an intermediate layer and for every class of the final output layer.
The visualization with this method has shown that some features and pat-
terns are recognizable especially in the optimal class images. However, a
user still has to interpret the results because they do not represent real-life
examples of training data. Also, a user must pay attention to draw proper
conclusions from the visualizations, as demonstrated in section 6.6.2 where
the results of Activation Maximization led to the assumption that CNN12
had to many convolutional layers. After removing the layers the classifica-
tion results got worse because the noise in the visualization images in fact
originated from upsampling instead of an insufficient architecture of the
network.
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Feature reconstruction with Deconvolution and Guided Backpropagation
deliverd similar results, although images from Guided Backpropagation
have a higher contrast and show finer and more detailed features. Deep-
Vis is able to visualize features of intermediate layers as well as from the
output layer, while in the evaluation only the latter have been shown. In
figure 85 intermediate features of the last convolutional layer in CNN7 are
depicted with the corresponding fault input image in the upper left corner.
The intermediate features are hard to distinguish and very similar to each
other, making it difficult to use them for understanding and optimization.
However, in literature Deconvolution is a popular technique to visualize
learned features of CNNs. Therefore, the assumption arises that especially
Deconvolution does not work well for black-and-white images with a small
size that we use in seismic classification.

Figure 85: Intermediate features for faults with Deconvolution

Guided Backpropagation results are better than Deconvolution results con-
cerning the visibility of features in the last layer but the approach of com-
bining Guided Backpropagation with Grad-CAM seems to be the more
viable solution as the fine-graded results are additionally localized show-
ing only regions of high interest to the network. With Guided Grad-CAM
unimportant features for the network are masked out while the most dis-
criminative regions are highlighted.

In conclusion, the evaluation has proven that the availability of high-quality
training data in large quantities is crucial for a high classification accuracy.
In some cases, the labels have to be adapted to the use case, like when
annotating the neighbourhood of every fault as no fault to achieve much
finer classification results. With a combination of Activation Maximization,
Grad-CAM and Guided Grad-CAM, a user has a rich toolkit for analyz-
ing, understanding and optimizing the deep learning process with CNNs.
DeepVis makes these tools available to users in their web browser and inte-
grates the CNN visualization into the deep learning workflow for seismic
interpretation.
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7 Conclusion and Outlook

In this thesis, five methods for visualizing different aspects of convolu-
tional neural networks have been presented with the purpose to get an in-
sight into the decision-making process and open the black-boxes of neural
networks. In order to use the visualizations and make them accessible for
people in the oil and gas industry, a visualization tool called DeepVis was
created and integrated into the DeepGeo platform. In addition to simple
2D CNNs, support for CNNs containing 3D convolutions has been imple-
mented as this has been considered by experts to be particularly necessary
in the oil and gas industry that uses large-scale three-dimensional datasets.

As CNNs are very complex structures, they are difficult to debug and hard
to understand completely. By visualizing features from intermediate and
final layers and revealing which concepts a network has learned, the black-
box system is opened to some extend and its decisions become more com-
prehensible for a user. Activation Maximization, Grad-CAM and Guided
Grad-CAM have proven to be particularly useful to understand what fea-
tures in an input image lead to which decisions. With this knowledge op-
timization possibilities can be deduced to improve the training data or the
network architecture as presented in section 6.6. However, a user still has
to be cautious when interpreting those visualizations as they are always
an abstraction of the complex processes inside a neural network and can
sometimes mislead.

Although the automatic interpretation of seismic data with deep learning
is only a small part of the oil and gas exploration process and therefore
DeepVis and DeepGeo represent only one link in a long chain of tools and
processes to eventually find hydrocarbon reservoirs, the use of deep learn-
ing will increase in the next years and will be a major research topic for
the oil and gas industry as well as many others. Classification results can
be further improved with post-processing methods or the combination of
several seismic datasets and perspectives with highly precise labelling.

DeepVis cannot make every single calculation of the complex classification
process visible and comprehensible as the amount of processed data and
variables is too large. However, DeepVis represents a first step towards a
better understanding of deep learning and the use of hybrid artificial in-
telligence in the seismic interpretation workflow. A computer’s precision
and its ability to handle large amounts of possibly monotonous data com-
bined with a human as supervising authority that can contribute domain
knowledge and a critical look from outside will be of great importance in
the future.

As the quality of training data has proven to be of great importance for
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a good performance of deep learning approaches, one idea for future re-
search is the clustering of similar samples in the seismic training datasets.
When DeepVis reveals a strong reaction to a certain kind of fault for exam-
ple, the training data could be searched for all similar-looking samples to
directly reveal which structures are detected best by the CNN and possibly
deduce further optimizations from this. This represents an extension to Ac-
tivation Maximization, in which images are found in the training data that
maximize the activation of a class instead of synthesizing optimal inputs.

Because the training data consists of many small and similar-looking black-
and-white images, the problem of a strong adaption to the training data,
called overfitting, plays a major role in automatic seismic classification. So
far, CNNs trained to detect seismic structures do not adapt well enough to
new volume datasets as they are too overfitted. Common regularization
methods like dropout and L2 regularization have shown some improve-
ments but are not capable enough in this context. Therefore, the overfitting
problem is also a challenging future research topic.

In conclusion, DeepVis is a promising solution to make decisions of CNNs
more comprehensible to users and to find optimization possibilities for
networks with poor performance. More visualization algorithms and op-
timizations of methods and results in the automatic seismic classification
workflow are subject to further research.
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A Visualization Results

(a) (b) (c) (d) (e)

Figure 86: Results of Deconvolution on the final layer (bottom) for class fault and
corresponding input images (top) in Parihaka dataset (CNN7, input
size 32× 32× 1)

(a) (b) (c) (d) (e)

Figure 87: Results of Deconvolution on the final layer (bottom) for class background
and corresponding input images (top) in Parihaka dataset (CNN7, in-
put size 32× 32× 1)
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(a) (b) (c) (d) (e)

Figure 88: Results of Guided Backpropagation on the final layer (bottom) for class
fault and corresponding input images (top) in Parihaka dataset (CNN7,
input size 32× 32× 1)

(a) (b) (c) (d) (e)

Figure 89: Results of Guided Backpropagation on the final layer (bottom) for class
background and corresponding input images (top) in Parihaka dataset
(CNN7, input size 32× 32× 1)
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(a) (b) (c) (d) (e)

Figure 90: Improved results of Guided Backpropagation on the final layer (bot-
tom) for class fault and corresponding input images (top) in F3 dataset
(CNN7, input size 32× 32× 1)

(a) (b) (c) (d) (e)

Figure 91: Improved results of Guided Backpropagation on the final layer (bot-
tom) for class no fault and corresponding input images (top) in F3
dataset (CNN7, input size 32× 32× 1)
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